

Welcome to Fledge’s documentation!

	Introduction to Fledge
	Typical Use Cases

	Architectural Overview

	No-code/Low-code Development

	Quick Start Guide
	Installing Fledge
	Using the package repository to install Fledge
	Ubuntu or Debian

	Installing Fledge downloaded packages

	Checking package installation

	Run with PostgreSQL

	Starting and stopping Fledge

	Troubleshooting Fledge

	Running the Fledge GUI
	Fledge Dashboard

	Managing Data Sources
	Adding Data Sources

	Configuring Data Sources

	Enabling and Disabling Data Sources

	Viewing Data
	Display Graph

	Download Data

	Sending Data to Other Systems
	Adding Data Destinations

	Configuring Data Destinations

	Enabling and Disabling Data Destinations

	Using the OMF plugin

	PI Web API OMF Endpoint

	Edge Data Store OMF Endpoint

	OSIsoft Cloud Services OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Backing up and Restoring Fledge

	Troubleshooting and Support Information

	Package Uninstallation
	Debian Platform

	Processing Data
	Why Use Filters?

	What Can Be Done?

	Where Can it Be Done?
	Adding a South Filter
	Reordering Filters

	Editing Filter Configuration

	Adding Filters To The North

	Some Useful Filters
	Scale

	Metadata

	Delta

	Rate

	Fledge Architecture
	Fledge Core

	Storage Layer

	South Microservices

	North Microservices

	Filters

	Event Service

	Set Point Control Service

	REST API

	Graphical User Interface

	Buffering & Storage
	Configuring The Storage Plugin
	SQLite Plugin Configuration

	Installing A PostgreSQL server
	Ubuntu Install

	SQLite Plugin Configuration

	Storage Management
	Purge Task

	System Purge Task

	Additional Services
	Notifications Service
	Notifications
	Notification Rules

	Notification Types
	One shot

	Toggle

	Retriggered

	Notification Delivery

	Installing the Notification Service
	Building Notification Service

	Installing Notification Service Package

	Starting The Notification Service

	Configuring The Notification Service

	Using The Notification Service
	Add A Notification
	Notification Log

	Editing Notifications

	Fledge Control Features
	Control Functions
	Set Point

	Operation

	Control Paths
	Edge Based Control
	Data Substitution

	Tuning edge control systems

	End to End Control

	Control Dispatcher Service
	Forwarding Requests

	Automation Scripts
	Graphical Interface
	Viewing & Editing Existing Scripts

	Adding a Script

	Step Conditions

	Access Control Lists
	Graphical Interface
	Adding An ACL

	Updating an ACL

	Configuration
	Server Configuration

	Advanced Configuration

	Plugin Documentation
	Fledge South Plugins
	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Function Codes

	Set Point Control

	Error Messages

	South MQTT
	Message Payload

	MQTT Sparkplug B

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	Enviro pHAT Plugin

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management
	Certificate Requirements

	Self-Signed Certificates
	Creating a Self-Signed Certificate
	Private Key

	Subject Attributes

	Subject Alternative Name

	x509v3 Extensions
	Key Usage

	Extended Key Usage

	Encoding Options

	CSR Options

	Generating the Certificate and Private Key

	Post-Processing the Certificate and Private Key
	Converting the Certificate File

	Converting the Private Key File

	Importing the Certificate and Key Files

	SenseHAT

	Sinusoid

	System Information

	Advantech USB-4704

	Fledge North Plugins
	OMF
	PI Web API OMF Endpoint

	Edge Data Store OMF Endpoint

	OSIsoft Cloud Services OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Azure IoT Hub
	JSON Payload

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	HarperDB

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	Payload Script

	Kafka Producer

	ThingSpeak

	Fledge Filter Plugins
	Asset Filter
	Asset Rules

	Change Filter

	Delta Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Adding Python35 Filters

	Example

	Scripting Guidelines
	Importing Python Packages

	Use of Global Variables

	File IO Operations

	Threads within Python

	Interaction with External Systems

	Scripting Errors
	Error Messages & Warnings

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Threshold Filter
	Expressions

	Fledge Notification Rule Plugins
	Threshold Rule

	Moving Average Rule

	Delta Rule

	Expression Rule

	Watchdog Rule

	Fledge Notification Delivery Plugins
	Amazon Alexa Notification

	Asset Notification

	Control Dispatcher Notification
	Trigger Values

	Custom Asset Notification
	Store Configuration

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	MQTT Notification

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

	Developing Data Pipelines
	Best Practices
	Incremental Development
	Sacrificial North System

	OMF Specific Considerations

	Examining Data

	Examining Logs

	Enabling and Disabling Filters

	Scripting Plugins
	Scripting Guidelines

	Importing Python Packages

	Use of Global Variables

	File IO Operations

	Threads within Python

	Interaction with External Systems

	Scripting Errors

	Securing Fledge
	Enabling HTTPS Encryption

	Requiring User Login
	Changing Your Password

	Password Rotation Mechanism

	User Management
	Adding Users

	Changing User Roles

	Reset User Password

	Delete A User

	Certificate Store

	Tuning Fledge
	South Service Advanced Configuration
	Tuning Buffer Usage

	North Advanced Configuration

	Health Monitoring

	Scheduler

	Storage
	Choosing A Storage Plugin
	Configuring Storage Plugins

	sqlite Plugin Configuration

	sqlitelb Configuration

	postgres Configuration

	sqlitememory Configuration

	Troubleshooting the PI Server integration
	Log files

	How to check the PI Web API is installed and running

	Commands to check the PI WEB API

	Error messages and causes

	OMF Plugin Data
	Managing Plugin Persisted Data
	Enable Develop Features

	Viewing Persisted Data

	Understanding The OMF Persisted Data

	Possible solutions to common problems

	Plugin Developer Guide
	Source Code Documentation

	Plugins
	Plugins in this version of Fledge

	Installing New Plugins

	Representing Data

	Writing and Using Plugins
	Common Fledge Plugin API
	Plugin Information

	Plugin Initialization

	Plugin Shutdown

	Plugin Reconfigure

	Configuration Lifecycle
	Discovery

	South Plugins
	Polled Mode
	Plugin Poll

	Async IO Mode
	Plugin Start

	Async Data Callback

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In Python: the DHT11 Sensor
	The Hardware

	The Software

	The Plugin

	Building Fledge and Adding the Plugin

	Using the Plugin

	South Plugins in C
	Polled Mode
	Plugin Poll

	Plugin Poll Returning Multiple Values

	Async IO Mode
	Plugin Register Ingest

	Plugin Start

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In C/C++: the DHT11 Sensor
	The Software

	The Plugin

	Building Fledge and Adding the Plugin

	C++ Support Classes
	Reading

	Configuration Category

	Logger

	Hybrid Plugins

	North Plugins
	Python Plugins
	The plugin_info call
	Configuration

	The plugin_init call

	The plugin_send call

	The plugin_shutdown call

	Reconfiguration

	Payload Handling

	C/C++ Plugins
	The plugin_info entry point

	The plugin_init entry point

	The plugin_send entry point

	The plugin_shutdown entry point

	The plugin_register entry point

	Set Point Control

	Storage Plugins
	Data and Metadata

	Common Elements for Storage Plugins

	Filter Plugins
	Configuration

	C++ Filter Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Ingest

	Plugin Reconfigure

	Plugin Shutdown

	C++ Helper Class

	C++ Filter Example
	Plugin Interface

	Filter Class

	Filter Class Implementation

	Python Filter API
	Plugin Information

	Plugin Initialisation

	Plugin Ingestion

	Plugin Reconfigure

	Plugin Shutdown

	Python Filter Example

	Notification Delivery Plugins
	Configuration

	Notification Delivery Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Delivery

	Plugin Reconfigure

	Plugin Shutdown

	Plugin Packaging
	Common files

	C based Plugins
	Examples of filename along with content

	Common Additional Libraries Package

	Python based Plugins
	Examples of filename along with content

	Building A Package

	Testing Your Plugin
	Initial Testing

	C/C++ Common Faults

	Running Under a Debugger
	Running a Service Under the Debugger

	Running a Task Under the Debugger

	Running the Storage Service Under the Debugger

	Using strace

	Memory Leaks and Corruptions

	Python Plugin Info

	Developing with Windows Subsystem for Linux (WSL2)
	Preparing the Development Environment
	Installing Windows Subsystem for Linux (WSL2)
	Some Useful Features of WSL2

	Preparing the Linux Distribution for Fledge

	Installing Fledge

	Installing Visual Studio Code

	Starting the Linux Distribution
	Starting syslog

	Starting Nginx

	Starting Fledge

	Starting Fledge GUI

	Configuring Visual Studio Code
	Installing Extensions

	Configuring your Workspace
	Code Editor Configuration: c_cpp_properties.json

	Build Configuration: tasks.json

	Debugger Configuration: launch.json

	Known Problems

	References

	REST API Developers Guide
	The Fledge REST API
	Introducing the Fledge REST API
	Port Usage

	Infrastructure

	Administration API Reference
	Audit Trail
	audit
	GET Audit Entries

	POST Audit Entries

	Configuration Management
	category
	GET categor(ies)

	GET category

	GET category item

	PUT category item

	DELETE category item

	POST category

	Task Management
	task
	GET task

	GET task latest

	GET task by ID

	Cancel task by ID

	Other Administrative API calls
	ping
	GET ping

	statistics
	GET statistics

	GET statistics/history

	User API Reference
	Browsing Assets
	asset
	GET all assets

	GET asset readings

	GET asset reading

	GET asset reading summary

	GET timed average asset reading

	Building Fledge
	Building Developers Guide
	Introduction
	What Is Fledge?
	Fledge Positioning in an IoT and IIoT Infrastructure

	Fledge Features

	Building Fledge
	Fledge Platforms
	Requirements

	Building Fledge
	Obtaining the Source Code

	Selecting the Correct Version

	Building Fledge

	Testing Fledge from the Build Environment

	Now I Want to Stop Fledge!

	Appendix: Setting the PostgreSQL Database

	Fledge Installation
	Installing Fledge from a Build
	Environment Variables

	The setenv.sh Script

	The fledge.service Script

	Installing the Debian Package
	Obtaining and Installing the Debian Package

	Upgrading or Downgrading Fledge

	Uninstalling the Debian Package

	Testing Fledge
	First Checks: Fledge Status

	Hello, Foggy World!
	The Fledge REST API
	Useful Tools

	Hello World!

	Hello from the Southern Hemisphere of the Fledge World
	fogbench: a Brief Intro

	Data Coming from South

	Checking What’s Inside Fledge
	Feeding East/West Applications

	Sending Greetings to the Northern Hemisphere
	The OMF Translator

	Preparing the PI System

	Setting the OMF Translator Plugin

	Sending Data to the PI System

	Fledge Utilities and Scripts
	fledge
	Starting Fledge

	Safe Mode

	Stopping Fledge

	If Fledge Does Not Stop

	Checking the Status of Fledge

	Resetting Fledge

	Fledge Tasks
	Purge
	Purge Schedule

	Purge Configuration

	Building and using Fledge on Raspbian

	OMF Kerberos Authentication
	Introduction

	PI Server as the North endpoint

	North plugin

	Fledge server configuration
	IP Address resolution of the KDC

	Kerberos client configuration

	Kerberos keytab file

	Troubleshooting the Kerberos authentication

	Fledge Plugins
	South Plugins

	North Plugins

	Filter Plugins

	Notification Rule Plugins

	Notification Delivery Plugins

	Version History
	Fledge v2
	v2.0.0

	Fledge v1
	v1.9.2

	v1.9.1

	v1.9.0

	v1.8.2

	v1.8.1

	v1.8.0

	v1.7.0

	v1.6.0

	v1.5.2

	v1.5.1

	v1.5.0

	v1.4.1

	v1.4.0

	v1.3.1
	Fixed Issues

	v1.3
	New Features

	Known Issues

	v1.2
	New Features

	Known Issues

	v1.1.1
	New Features

	Known Issues

	v1.1
	New Features

	Known Issues

	v1.0
	Features

	Known Issues

	Downloads
	Packages

	Download/Clone from GitHub

	Glossary

Introduction to Fledge

Fledge is an open Industrial IoT system designed to make collecting, filtering, processing and using operational data simpler and more open. Core to Fledge is an extensible microservice based architecture enabling any data to be read, processed and sent to any system. Coupled with this extensibility Fledge’s Apache 2 license and community of developers results in an ever growing choice of components that can be used to solve your OT data needs well into the feature.

Fledge provides a scalable, secure, robust infrastructure for collecting data from sensors, processing data at the edge using intelligent data pipelines and transporting data to historian and other management systems. Fledge also allows for edge based event detection and notification and control flows as a result of events, stimulus from upstream systems or user action. Fledge can operate over the unreliable, intermittent and low bandwidth connections often found in industrial or rugged environments.

Typical Use Cases

The depth and breadth of Industrial IoT use cases is considerable. Fledge is designed to address them. Below are some examples of typical Fledge deployments.

	Unified data collection
	The industrial edge is one of the more challenging in computing. Today there are over 100 different protocols, no standards in machine data definitions, different types of data (time-series, vibration, array, image, radiometric, transactional, etc.), sensors producing bytes/hr to gigs/hr all in environments with network, power and environmental challenges. This diversity creates pain in managing, scaling, securing and orchestrating industrial data. Ultimately resulting in silos of data with competing context. Fledge is designed to eliminate those silos by providing a very flexible data collections and distribution mechanism all using the same APIs, features and functions.

	Specialized Analytical Environments
	With the advent of cloud systems and sophisticated analytic tools it may no longer be possible to have a single system that is both your system of record and the place on which the analytics takes place. Fledge allows you to distribute your data to multiple systems, either in part or as a whole. This allows you to get just the data you need to the systems that need it without compromising your system of record.

	Resilience
	Fledge provides mechanisms to store and forward your data. Data is no longer lost if a connection to some key system is unavailable.

	Edge processing
	Using the Fledge intelligent data pipelines concept, Fledge allows for your data to be processed close to where it is gathered. This can save both network bandwidth and reduce costs when high bandwidth sensors such as vibration monitors or image capture is used. In addition it reduces the latency when timely action is required compared with shipping and processing data in the cloud or at some centralized IT location.

	No code/Low code solutions
	Fledge provides tools that allow the OT engineer to create solutions by use of existing processing elements that can be combined and augmented with little or no coding required. This allows the OT organization to be able to quickly and independently obtain the data they need for their specific requirements.

	Process Optimization & Operational Efficiency
	The Fledge intelligent pipelines, with their prebuilt processing elements and through use of machine learning techniques can be used to improve operational efficiency by giving operators immediate feedback on the state of the process of product being produced without remote analytics and the associated delays involved.

Architectural Overview

Fledge is implemented as a collection of microservices which include:

	Core services, including security, monitoring, and storage

	Data transformation and alerting services

	South services: Collect data from sensors and other Fledge systems

	North services: Transmit and integrate data to historians and other systems

	Edge data processing applications

	Event detection and notification

	Set point control

Services can easily be developed and incorporated into the Fledge framework. Fledge services may also be customized by creating new plugins, written in C/C++ or Python, for data collection, processing, export, rule evaluation and event notification. The Developer Guides describe how to do this.

More detail on the Fledge architecture can be found in the section Fledge Architecture.

No-code/Low-code Development

Fledge can be extended by writing code to add new plugins. Additionally, it is easily tailored by combining pre-written data processing filters applied in linear pipelines to data as it comes into or goes out of the Fledge system. A number of filters exist that can be customized with small snippets of code written in the Python scripting language. These snippets of code allow the end user to produce custom processing without the need to develop more complex plugins or other code. The environment also allows them to experiment with these code snippets to obtain the results desired.

Data may be processed on the way into Fledge or on the way out. Processing on the way in allows the data to be manipulated to the way the organization wants it. Processing on the way out allows the data to be manipulate to suit the up stream system that will use the data without impacting the data that might go to another up stream system.

See the section Developing Data Pipelines.

Quick Start Guide

	Installing Fledge
	Using the package repository to install Fledge
	Ubuntu or Debian

	Installing Fledge downloaded packages

	Checking package installation

	Run with PostgreSQL

	Starting and stopping Fledge

	Troubleshooting Fledge

	Running the Fledge GUI
	Fledge Dashboard

	Managing Data Sources
	Adding Data Sources

	Configuring Data Sources

	Enabling and Disabling Data Sources

	Viewing Data
	Display Graph

	Download Data

	Sending Data to Other Systems
	Adding Data Destinations

	Configuring Data Destinations

	Enabling and Disabling Data Destinations

	Using the OMF plugin

	PI Web API OMF Endpoint

	Edge Data Store OMF Endpoint

	OSIsoft Cloud Services OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Backing up and Restoring Fledge

	Troubleshooting and Support Information

	Package Uninstallation
	Debian Platform

Installing Fledge

Fledge is extremely lightweight and can run on inexpensive edge devices, sensors and actuator boards. For the purposes of this manual, we assume that all services are running on a Raspberry Pi running the Raspbian operating system. Be sure your system has plenty of storage available for data readings.

If your system does not have Raspbian pre-installed, you can find instructions on downloading and installing it at https://www.raspberrypi.org/downloads/raspbian/. After installing Raspbian, ensure you have the latest updates by executing the following commands on your Fledge server:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get update

You can obtain Fledge in three ways:

	Dianomic Systems hosts a package repository that allows the Fledge packages to be loaded using the system package manage. This is the recommended method for long term use of Fledge as it gives access to all the Fledge plugins and provides a route for easy upgrade of the Fledge packages. This also has the advantages that once the repository is configured you are able to install new plugins directly from the Fledge user interface without the need to resort to the Linux command line.

	Dianomic Systems offers pre-built, certified binaries of Fledge for Debian using either Intel or ARM architectures. This is perhaps the simplest method for users not used to Linux. You can download the complete set of packages from http://dianomic.com/download-fledge/.

	As source code from https://github.com/fledge-iot/. Instructions for downloading and building Fledge source code can be found in the Fledge Developer’s Guide

In general, Fledge installation will require the following packages:

	Fledge core

	Fledge user interface

	One or more Fledge South services

	One or more Fledge North service (OSI PI and OCS north services are included in Fledge core)

Using the package repository to install Fledge

If you choose to use the Dianomic Systems package repository to install the packages you will need to follow the steps outlined below for the particular platform you are using.

Ubuntu or Debian

On a Ubuntu or Debian system, including the Raspberry Pi, the package manager that is supported is apt. You will need to add the Dianomic Systems archive server into the configuration of apt on your system. The first thing that most be done is to add the key that is used to verify the package repository. To do this run the command

wget -q -O - http://archives.fledge-iot.org/KEY.gpg | sudo apt-key add -

Once complete you can add the repository itself into the apt configuration file /etc/apt/sources.list. The simplest way to do this is the use the add-apt-repository command. The exact command will vary between systems;

	Raspberry Pi does not have an apt-add-repository command, the user must edit the apt sources file manually

sudo vi /etc/apt/sources.list

and add the line

deb http://archives.fledge-iot.org/latest/buster/armv7l/ /

to the end of the file.

Note

Replace buster with stretch or bullseye based on the OS image used.

	Users with an Intel or AMD system with Ubuntu 18.04 should run

sudo add-apt-repository "deb http://archives.fledge-iot.org/latest/ubuntu1804/x86_64/ / "

	Users with an Intel or AMD system with Ubuntu 20.04 should run

sudo add-apt-repository "deb http://archives.fledge-iot.org/latest/ubuntu2004/x86_64/ / "

Note

We do not support the aarch64 architecture with Ubuntu 20.04 yet.

	Users with an Arm system with Ubuntu 18.04, such as the Odroid board, should run

sudo add-apt-repository "deb http://archives.fledge-iot.org/latest/ubuntu1804/aarch64/ / "

	Users of the Mendel operating system on a Google Coral create the file /etc/apt/sources.list.d/fledge.list and insert the following content

deb http://archives.fledge-iot.org/latest/mendel/aarch64/ /

Once the repository has been added you must inform the package manager to go and fetch a list of the packages it supports. To do this run the command

sudo apt -y update

You are now ready to install the Fledge packages. You do this by running the command

sudo apt -y install *package*

You may also install multiple packages in a single command. To install the base fledge package, the fledge user interface and the sinusoid south plugin run the command

sudo DEBIAN_FRONTEND=noninteractive apt -y install fledge fledge-gui fledge-south-sinusoid

Installing Fledge downloaded packages

Assuming you have downloaded the packages from the download link given above. Use SSH to login to the system that will host Fledge services. For each Fledge package that you choose to install, type the following command:

sudo apt -y install PackageName

The key packages to install are the Fledge core and the Fledge User Interface:

sudo DEBIAN_FRONTEND=noninteractive apt -y install ./fledge-1.8.0-armv7l.deb
sudo apt -y install ./fledge-gui-1.8.0.deb

You will need to install one of more South plugins to acquire data. You can either do this now or when you are adding the data source. For example, to install the plugin for the Sense HAT sensor board, type:

sudo apt -y install ./fledge-south-sensehat-1.8.0-armv7l.deb

You may also need to install one or more North plugins to transmit data. Support for OSIsoft PI and OCS are included with the Fledge core package, so you don’t need to install anything more if you are sending data to only these systems.

Checking package installation

To check what packages have been installed, ssh into your host system and use the dpkg command:

dpkg -l | grep 'fledge'

Run with PostgreSQL

To start Fledge with PostgreSQL, first you need to install the PostgreSQL package explicitly. See the below links for setup

For Debian Platform

Also you need to change the value of Storage plugin. See Configure Storage Plugin from GUI or with below curl command

$ curl -sX PUT localhost:8081/fledge/category/Storage/plugin -d '{"value": "postgres"}'
{
 "description": "The main storage plugin to load",
 "type": "string",
 "order": "1",
 "displayName": "Storage Plugin",
 "default": "sqlite",
 "value": "postgres"
}

Now, it’s time to restart Fledge. Thereafter you will see Fledge is running with PostgreSQL.

Starting and stopping Fledge

Fledge administration is performed using the “fledge” command line utility. You must first ssh into the host system. The Fledge utility is installed by default in /usr/local/fledge/bin.

The following command options are available:

	Start: Start the Fledge system

	Stop: Stop the Fledge system

	Status: Lists currently running Fledge services and tasks

	Reset: Delete all data and configuration and return Fledge to factory settings

	Kill: Kill Fledge services that have not correctly responded to Stop

	Help: Describe Fledge options

For example, to start the Fledge system, open a session to the Fledge device and type:

/usr/local/fledge/bin/fledge start

Troubleshooting Fledge

Fledge logs status and error messages to syslog. To troubleshoot a Fledge installation using this information, open a session to the Fledge server and type:

grep -a 'fledge' /var/log/syslog | tail -n 20

Running the Fledge GUI

Fledge offers an easy-to-use, browser-based GUI. To access the GUI, open your browser and enter the IP address of the Fledge server into the address bar. This will display the Fledge dashboard.

You can easily use the Fledge UI to monitor multiple Fledge servers. To view and manage a different server, click “Settings” in the left menu bar. In the “Connection Setup” pane, enter the IP address and port number for the new server you wish to manage. Click the “Set the URL & Restart” button to switch the UI to the new server.

If you are managing a very lightweight server or one that is connected via a slow network link, you may want to reduce the UI update frequency to minimize load on the server and network. You can adjust this rate in the “GUI Settings” pane of the Settings screen. While the graph rate and ping rate can be adjusted individually, in general you should set them to the same value.

Fledge Dashboard

	[image: dashboard]

This screen provides an overview of Fledge operations. You can customize the information and time frames displayed on this screen using the drop-down menus in the upper right corner. The information you select will be displayed in a series of graphs.

You can choose to view a graph of any of the sensor reading being collected by the Fledge system. In addition, you can view graphs of the following system-wide information:

	Readings: The total number of data readings collected by Fledge since system boot

	Buffered: The number of data readings currently stored by the system

	Discarded: Number of data readings discarded before being buffered (due to data errors, for example)

	Unsent: Number of data readings that were not sent successfully

	Purged: The total number of data readings that have been purged from the system

	Unsnpurged: The number of data readings that were purged without being sent to a North service.

Managing Data Sources

	[image: south_services]

Data sources are managed from the South Services screen. To access this screen, click on “South” from the menu bar on the left side of any screen.

The South Services screen displays the status of all data sources in the Fledge system. Each data source will display its status, the data assets it is providing, and the number of readings that have been collected.

Adding Data Sources

To add a data source, you will first need to install the plugin for that sensor type. If you have not already done this, open a terminal session to your Fledge server. Download the package for the plugin and enter:

sudo apt -y install PackageName

Once the plugin is installed return to the Fledge GUI and click on “Add+” in the upper right of the South Services screen. Fledge will display a series of 3 screens to add the data source:

	The first screen will ask you to select the plugin for the data source from the list of installed plugins. If you do not see the plugin you need, refer to the Installing Fledge section of this manual. In addition, this screen allows you to specify a display name for the data source.

	The second screen allows you to configure the plugin and the data assets it will provide.

Note

Every data asset in Fledge must have a unique name. If you have multiple sensors using the same plugin, modify the asset names on this screen so they are unique.

Some plugins allow you to specify an asset name prefix that will apply to all the asset names for that sensor. Refer to the individual plugin documentation for descriptions of the fields on this screen.

	If you modify any of the configuration fields, click on the “save” button to save them.

	The final screen allows you to specify whether the service will be enabled immediately for data collection or await enabling in the future.

Configuring Data Sources

	[image: south_service_config]

To modify the configuration of a data source, click on its name in the South Services screen. This will display a list of all parameters available for that data source. If you make any changes, click on the “save” button in the top panel to save the new configuration. Click on the “x” button in the upper right corner to return to the South Services screen.

Enabling and Disabling Data Sources

To enable or disable a data source, click on its name in the South Services screen. Under the list of data source parameters, there is a check box to enable or disable the service. If you make any changes, click on the “save” button in the bottom panel near the check box to save the new configuration.

Viewing Data

	[image: viewing_data]

You can inspect all the data buffered by the Fledge system on the Assets page. To access this page, click on “Assets & Readings” from the left-side menu bar.

This screen will display a list of every data asset in the system. Alongside each asset are two icons; one to display a graph of the asset and another to download the data stored for that asset as a CSV file.

Display Graph

[image: ../_images/graph_icon.jpg]
By clicking on the graph button next to each asset name, you can view a graph of individual data readings. A graph will be displayed with a plot for each data point within the asset.

	[image: view_graph]

It is possible to change the time period to which the graph refers by use of the plugin list in the top left of the graph.

	[image: view_times]

Where an asset contains multiple data points each of these is displayed in a different colour. Graphs for particular data points can be toggled on and off by clicking on the key at the top of the graph. Those data points not should will be indicated by striking through the name of the data point.

	[image: view_hide]

A summary tab is also available, this will show the minimum, maximum and average values for each of the data points. Click on Summary to show the summary tab.

	[image: view_summary]

Download Data

[image: ../_images/download_icon.jpg]
By clicking on the download icon adjacent to each asset you can download the stored data for the asset. The format of the file is download is a CSV file that is designed to be loaded int a spreadsheet such as Excel, Numbers or OpenOffice Calc.

The file contains a header row with the names of the data points within the asset, the first column is always the timestamp when the reading was taken, the header for this being timestamp. The data is sorted in chronological order with the newest data first.

	[image: view_spreadsheet]

Sending Data to Other Systems

	[image: north_services]

Data destinations are managed from the North Services screen. To access this screen, click on “North” from the menu bar on the left side of any screen.

The North Services screen displays the status of all data sending processes in the Fledge system. Each data destination will display its status and the number of readings that have been collected.

Adding Data Destinations

To add a data destination, click on “Create North Instance+” in the upper right of the North Services screen. Fledge will display a series of 3 screens to add the data destination:

	The first screen will ask you to select the plugin for the data destination from the list of installed plugins. If you do not see the plugin you need, refer to the Installing Fledge section of this manual. In addition, this screen allows you to specify a display name for the data destination. In addition, you can specify how frequently data will be forwarded to the destination in days, hours, minutes and seconds. Enter the number of days in the interval in the left box and the number of hours, minutes and seconds in format HH:MM:SS in the right box.

	The second screen allows you to configure the plugin and the data assets it will send. See the section below for specifics of configuring a PI, EDS or OCS destination.

	The final screen loads the plugin. You can specify whether it will be enabled immediately for data sending or to await enabling in the future.

Configuring Data Destinations

To modify the configuration of a data destination, click on its name in the North Services screen. This will display a list of all parameters available for that data source. If you make any changes, click on the “save” button in the top panel to save the new configuration. Click on the “x” button in the upper right corner to return to the North Services screen.

Enabling and Disabling Data Destinations

To enable or disable a data source, click on its name in the North Services screen. Under the list of data source parameters, there is a check box to enable or disable the service. If you make any changes, click on the “save” button in the bottom panel near the check box to save the new configuration.

Using the OMF plugin

OSISoft data historians are one of the most common destinations for Fledge data. Fledge supports the full range of OSISoft historians; the PI System, Edge Data Store (EDS) and OSISoft Cloud Services (OCS). To send data to a PI server you may use either the older PI Connector Relay or the newer PI Web API OMF endpoint. It is recommended that new users use the PI Web API OMF endpoint rather then the Connector Relay which is no longer supported by OSIsoft.

PI Web API OMF Endpoint

To use the PI Web API OMF endpoint first ensure the OMF option was included in your PI Server when it was installed.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_pi_web_config]

Select PI Web API from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose PI Web API.

	Send full structure: Used to control if Asset Framework structure messages are sent to the PI Server. If this is turned off then the data will not be placed in the Asset Framework.

	Naming scheme: Defines the naming scheme to be used when creating the PI points in the PI Data Archive. See Naming Scheme.

	Server hostname: The hostname or address of the PI Web API server. This is normally the same address as the PI Server.

	Server port: The port the PI Web API OMF endpoint is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Asset Framework
	
	Default Asset Framework Location: The location in the Asset Framework hierarchy into which the data will be inserted.
All data will be inserted at this point in the Asset Framework hierarchy unless a later rule overrides this.
Note this field does not include the name of the target Asset Framework Database;
the target database is defined on the PI Web API server by the PI Web API Admin Utility.

	Asset Framework Hierarchies Rules: A set of rules that allow specific readings to be placed elsewhere in the Asset Framework. These rules can be based on the name of the asset itself or some metadata associated with the asset. See Asset Framework Hierarchy Rules.

	
	PI Web API authentication
	
	PI Web API Authentication Method: The authentication method to be used: anonymous, basic or kerberos.
Anonymous equates to no authentication, basic authentication requires a user name and password, and Kerberos allows integration with your single signon environment.

	PI Web API User Id: For Basic authentication, the user name to authenticate with the PI Web API.

	PI Web API Password: For Basic authentication, the password of the user we are using to authenticate.

	PI Web API Kerberos keytab file: The Kerberos keytab file used to authenticate.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI Server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to the PI Web API OMF endpoint.
This setting is not related to data compression in the PI Data Archive.

Edge Data Store OMF Endpoint

To use the OSIsoft Edge Data Store first install Edge Data Store on the same machine as your Fledge instance. It is a limitation of Edge Data Store that it must reside on the same host as any system that connects to it with OMF.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_eds_config]

Select Edge Data Store from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose Edge Data Store.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: Normally the hostname or address of the OMF endpoint. For Edge Data Store, this must be localhost.

	Server port: The port the Edge Data Store is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the Edge Data Store. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to the Edge Data Store.

OSIsoft Cloud Services OMF Endpoint

Go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_ocs_config]

Select OSIsoft Cloud Services from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose OSIsoft Cloud Services.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Data Source: Defines which data is sent to OSIsoft Cloud Services. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to OSIsoft Cloud Services. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Authentication
	
	OCS Namespace: Your namespace within OSIsoft Cloud Services.

	OCS Tenant ID: Your OSIsoft Cloud Services Tenant ID for your account.

	OCS Client ID: Your OSIsoft Cloud Services Client ID for your account.

	OCS Client Secret: Your OSIsoft Cloud Services Client Secret.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to OSIsoft Cloud Services.

PI Connector Relay

The PI Connector Relay has been discontinued by OSIsoft.
All new deployments should use the PI Web API endpoint.
Existing installations will still be supported.
The PI Connector Relay was the original mechanism by which OMF data could be ingesting into a PI Server.
To use the PI Connector Relay, open and sign into the PI Relay Data Connection Manager.

	[image: PI_connectors]

To add a new connector for the Fledge system, click on the drop down menu to the right of “Connectors” and select “Add an OMF application”. Add and save the requested configuration information.

	[image: PI_connect]

Connect the new application to the PI Connector Relay by selecting the new Fledge application, clicking the check box for the PI Connector Relay and then clicking “Save Configuration”.

	[image: PI_token]

Finally, select the new Fledge application. Click “More” at the bottom of the Configuration panel. Make note of the Producer Token and Relay Ingress URL.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_connector_relay_config]

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose Connector Relay.

	Server hostname: The hostname or address of the PI Connector Relay.

	Server port: The port the PI Connector Relay is listening on. Leave as 0 if you are using the default port.

	Producer Token: The Producer Token provided by the PI Relay Data Connection Manager.

	Data Source: Defines which data is sent to the PI Connector Relay. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

Naming Scheme

The naming of objects in the Asset Framework and of the attributes of
those objects has a number of constraints that need to be understood when
storing data into a PI Server using OMF.
An important factor in this is the stability of your data structures.
If you have objects in your environment that are likely to change,
you may wish to take a different naming approach.
Examples of changes are a difference in the number of attributes between readings, and a change in the data types of attributes.

This occurs because of a limitation of the OMF interface to the PI Server.
Data is sent to OMF in a number of stages.
One of these is the definition of the Types used to create AF Element Templates.
OMF uses a Type to define an AF Element Template but once defined it cannot be changed.
If an updated Type definition is sent to OMF, it will be used to create a new AF Element Template rather than changing the existing one.
This means a new AF Element Template is created each time a Type changes.

The OMF plugin names objects in the Asset Framework based upon the asset
name in the reading within Fledge. Asset names are typically added to
the readings in the south plugins, however they may be altered by filters
between the south ingest and the north egress points in the data
pipeline. Asset names can be overridden using the OMF Hints mechanism
described below.

The attribute names used within the objects in the PI System are based
on the names of the datapoints within each Reading within Fledge. Again
OMF Hints can be used to override this mechanism.

The naming used within the objects in the Asset Framework is controlled
by the Naming Scheme option:

	Concise
	No suffix or prefix is added to the asset name and property name when
creating objects in the Asset Framework and PI Points in the PI Data Archive.
However, if the structure of an asset changes a new AF Element Template
will be created which will have the suffix -type*x* appended to it.

	Use Type Suffix
	The AF Element names will be created from the asset names by appending
the suffix -type*x* to the asset name. If the structure
of an asset changes a new AF Element name will be created with an
updated suffix.

	Use Attribute Hash
	AF Attribute names will be created using a numerical hash as a prefix.

	Backward Compatibility
	The naming reverts to the rules that were used by version 1.9.1 and
earlier of Fledge: both type suffixes and attribute hashes will be
applied to the name.

Asset Framework Hierarchy Rules

The Asset Framework rules allow the location of specific assets within
the Asset Framework to be controlled. There are two basic types of hint:

	Asset name placement: the name of the asset determines where in the
Asset Framework the asset is placed,

	Meta data placement: metadata within the reading determines where
the asset is placed in the Asset Framework.

The rules are encoded within a JSON document.
This document contains two properties in the root of the document:
one for name-based rules and the other for metadata based rules.

{
 "names" :
 {
 "asset1" : "/Building1/EastWing/GroundFloor/Room4",
 "asset2" : "Room14"
 },
 "metadata" :
 {
 "exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 },
 "nonexist" :
 {
 "unit" : "Uncalibrated"
 }
 "equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }
 "notequal" :
 {
 "building" :
 {
 "plant" : "/Office/Environment"
 }
 }
 }
}

The name type rules are simply a set of asset name and Asset Framework location
pairs. The asset names must be complete names; there is no pattern
matching within the names.

The metadata rules are more complex. Four different tests can be applied:

	exists: This test looks for the existence of the named datapoint within the asset.

	nonexist: This test looks for the lack of a named datapoint within the asset.

	equal: This test looks for a named datapoint having a given value.

	notequal: This test looks for a name datapoint having a value different from that specified.

The exist and nonexist tests take a set of name/value pairs that
are tested. The name is the datapoint name to examine and the value is
the Asset Framework location to use. For example

"exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 }

If an asset has a datapoint called temperature in will be stored in
the AF hierarchy temperatures, if the asset had a datapoint called
power the asset will be placed in the AF hierarchy /Electrical/Power.

The equal and notequal tests take an object as a child, the name of
the object is datapoint to examine, the child nodes a sets of values
and locations. For example

"equal" :
 {
 "room" :
 {
 "4" : "ElectricalLab",
 "6" : "FluidLab"
 }
 }

In this case if the asset has a datapoint called room with a value
of 4 then the asset will be placed in the AF location ElectricalLab,
if it has a value of 6 then it is placed in the AF location FluidLab.

If an asset matches multiple rules in the ruleset it will appear in
multiple locations in the hierarchy, the data is shared between each of
the locations.

If an OMF Hint exists within a particular reading this will take
precedence over generic rules.

The AF location may be a simple string or it may also include
substitutions from other datapoints within the reading. For example
of the reading has a datapoint called room that contains the room
in which the readings was taken, an AF location of /BuildingA/${room}
would put the reading in the Asset Framework using the value of the room
datapoint. The reading

"reading" : {
 "temperature" : 23.4,
 "room" : "B114"
 }

would be put in the AF at /BuildingA/B114 whereas a reading of the form

"reading" : {
 "temperature" : 24.6,
 "room" : "2016"
 }

would be put at the location /BuildingA/2016.

It is also possible to define defaults if the referenced datapoint
is missing. In our example above if we used the location
/BuildingA/${room:unknown} a reading without a room datapoint would
be placed in /BuildingA/unknown. If no default is given and the data
point is missing then the level in the hierarchy is ignore. E.g. if we
use our original location /BuildingA/${room} and we have the reading

"reading" : {
 "temperature" : 22.8,
 }

this reading would be stored in /BuildingA.

OMF Hints

The OMF plugin also supports the concept of hints in the actual data
that determine how the data should be treated by the plugin. Hints are
encoded in a specially name datapoint within the asset, OMFHint. The
hints themselves are encoded as JSON within a string.

Number Format Hints

A number format hint tells the plugin what number format to use when inserting data
into the PI Server. The following will cause all numeric data within
the asset to be written using the format float32.

"OMFHint" : { "number" : "float32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Integer Format Hints

An integer format hint tells the plugin what integer format to use when inserting
data into the PI Server. The following will cause all integer data
within the asset to be written using the format integer32.

"OMFHint" : { "number" : "integer32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Type Name Hints

A type name hint specifies that a particular name should be used when
defining the name of the type that will be created to store the object
in the Asset Framework. This will override the Naming Scheme currently
configured.

"OMFHint" : { "typeName" : "substation" }

Type Hint

A type hint is similar to a type name hint, but instead of defining
the name of a type to create it defines the name of an existing type
to use. The structure of the asset must match the structure of the
existing type with the PI Server, it is the responsibility of the person
that adds this hint to ensure this is the case.

"OMFHint" : { "type" : "pump" }

Tag Name Hint

Specifies that a specific tag name should be used when storing data in the PI Server.

"OMFHint" : { "tagName" : "AC1246" }

Datapoint Specific Hint

Hints may also be targeted to specific data points within an asset by
using the datapoint hint. A datapoint hint takes a JSON object as
its value; the object defines the name of the datapoint and the hint
to apply.

"OMFHint" : { "datapoint" : { "name" : "voltage:, "number" : "float32" } }

The above hint applies to the datapoint voltage in the asset and
applies a number format hint to that datapoint.

Asset Framework Location Hint

An Asset Framework location hint can be added to a reading to control
the placement of the asset within the Asset Framework. An Asset Framework
hint would be as follows:

"OMFHint" : { "AFLocation" : "/UK/London/TowerHill/Floor4" }

Note the following when defining an AFLocation hint:

	An asset in a Fledge Reading is used to create a Container in the OSIsoft Asset Framework [https://docs.osisoft.com/bundle/omf-with-pi-web-api/page/container-messages.html].
A Container is an AF Element with one or more AF Attributes that are mapped to PI Points using the OSIsoft PI Point Data Reference.
The name of the AF Element comes from the Fledge Reading asset name.
The names of the AF Attributes come from the Fledge Reading datapoint names.

	If you edit the AF Location hint, the Container will be moved to the new location in the AF hierarchy.

	If you disable the OMF Hint filter, the Container will not move.

	If you wish to move a Container, you can do this with the PI System Explorer.
Right-click on the AF Element that represents the Container.
Choose Copy.
Select the AF Element that will serve as the new parent of the Container.
Right-click and choose Paste.
You can then return to the original Container and delete it.
Note that PI System Explorer does not have the traditional Cut function for AF Elements.

	If you move a Container, OMF North will not recreate it.
If you then edit the AF Location hint, the Container will appear in the new location.

Adding OMF Hints

An OMF Hint is implemented as a string data point on a reading with
the data point name of OMFHint. It can be added at any point in the
processing of the data, however a specific plugin is available for adding
the hints, the OMFHint filter plugin.

Backing up and Restoring Fledge

	[image: backup]

You can make a complete backup of all Fledge data and configuration. To do this, click on “Backup & Restore” in the left menu bar. This screen will show a list of all backups on the system and the time they were created.
To make a new backup, click the “Backup” button in the upper right corner of the screen. You will briefly see a “Running” indicator in the lower left of the screen. After a period of time, the new backup will appear in the list. You may need to click the refresh button in the upper left of the screen to refresh the list.
You can restore, delete or download any backup simply by clicking the appropriate button next to the backup in the list.

Troubleshooting and Support Information

	[image: support]

Fledge keep detailed logs of system events for both auditing and troubleshooting use. To access them, click “Logs” in the left menu bar. There are five logs in the system:

	Audit: Tracks all configuration changes and data uploads performed on the Fledge system.

	Notifications: If you are using the Fledge notification service this log will give details of notifications that have been triggered

	Packages: This log will give you information about the installation and upgrade of Fledge packages for services and plugins.

	System: All events and scheduled tasks and their status.

	Tasks: The most recent scheduled tasks that have run and their status

If you have a service contract for your Fledge system, your support technician may ask you to send system data to facilitate troubleshooting an issue. To do this, click on “Support” in the left menu and then “Request New” in the upper right of the screen. This will create an archive of information. Click download to retrieve this archive to your system so you can email it to the technician.

Package Uninstallation

Debian Platform

Use the apt or the apt-get command to uninstall Fledge:

sudo apt -y purge fledge

Note

You may notice the warning in the last row of the package removal output:

dpkg: warning: while removing fledge, directory ‘/usr/local/fledge’ not empty so not removed

This is due to the fact that the data directory (/usr/local/fledge/data by default) has not been removed, in case we might want to analyze or reuse the data further.
So, if you want to remove fledge completely from your system, then do rm -rf /usr/local/fledge directory.

Processing Data

We have already seen that Fledge can collect data from a variety of sources, buffer it locally and send it on to one or more destination systems. It is also possible to process the data within Fledge to edit, augment or remove data as it traverses the Fledge system. In the same way Fledge makes extensive use of plugin components to add new sources of data and new destinations for that data, Fledge also uses plugins to add processing filters to the Fledge system.

Why Use Filters?

The concept behind filters is to create a set of small, useful pieces of
functionality that can be inserted into the data flow from the south data
ingress side to the north data egress side. By making these elements
small and dedicated to a single task it increases the re-usability of
the filters and greatly improves the chances when a new requirement
is encountered that it can be satisfied by creating a filter pipeline
from existing components or by augmenting existing components with the
addition of any incremental processing required. The ultimate aim being
to be able to create new applications within Fledge by merely configuring
filters from the existing pool of available filters into a suitable pipeline
without the need to write any new code.

What Can Be Done?

Data processing is done via plugins that are known as filters in Fledge, therefore it is not possible to give a definitive list of all the different processing that can occur, the design intent is that it is expandable by the user. The general types of things that can be done are;

	Modify a value in a reading. This could be as simple as applying a scale factor to convert from one measurement scale to another or more complex mathematical operation.

	Modify asset or datapoint names. Perform a simple textual substitution in order to change the name of an asset or a data point within that asset.

	Add a new calculated value. A new value can be calculated from a set of values, either based over a time period or based on a combination of different values, e.g. calculate power from voltage and current.

	Add metadata to an asset. This allows data such as units of measurement or information about the data source to be added to the data.

	Compress data. Only send data forward when the data itself shows significant change from previous values. This can be a useful technique to save bandwidth in low bandwidth or high cost network connections.

	Conditionally forward data. Only send data when a condition is satisfied or send low rate data unless some interesting condition is met.

	Data conditioning. Remove data from the data stream if the values are suspect or outside of reasonable conditions.

Where Can it Be Done?

Filters can be applied in two locations in the Fledge system;

	In the south service as data arrives in Fledge and before it is added to the storage subsystem for buffering.

	In the north tasks as the data is sent out to the upstream systems that receive data from the Fledge system.

More than one filter can be added to a single south or north within a Fledge instance. Filters are placed in an ordered pipeline of filters that are applied to the data in the order of the pipeline. The output of the first filter becomes the input to the second. Filters can thus be combined to perform complex sets of operations on a particular data stream into Fledge or out of Fledge.

The same filter plugin can appear in multiple places within a filter pipeline, a different instance is created for each and each one has its own configuration.

Adding a South Filter

In the following example we will add a filter to a south service. The filter we will use is the expression filter and we will convert the incoming value to a logarithmic scale. The south plugin used in this simple example is the sinusoid plugin that creates a simulated sine wave.

The process starts by selecting the South services in the Fledge GUI from the left-hand menu bar. Then click on the south service of interest. This will display a dialog that allows the south service to be edited.

	[image: filter_south]

Towards the bottom of this dialog is a section labeled Applications with a + icon to the right, select the + icon to add a filter to the south service. A filter wizard is now shown that allows you to select the filter you wish to add and give that filter a name.

	[image: filter_add]

Select the expression filter and enter a name in the dialog. Now click on the Next button. A new page in the wizard appears that allows the configuration of the filter.

	[image: filter_expression]

In the case of our expression filter we should add the expression we wish to execute log(sinusoid) and the name of the datapoint we wish to put the result in, LogSine. We can also choose to enable or disable the execution of this filter. We will enable it and click on Done to complete adding the filter.

Click on Save in the south edit dialog and our filter is now installed and running.

If we select the Assets & Readings option from the menu bar we can examine the sinusoid asset and view a graph of that asset. We will now see a second datapoint has been added, LogSine which is the result of executing our expression in the filter.

	[image: filter_data]

A second filter can be added in the same way, for example a metadata filter to create a pipeline. Now when we go back and view the south service we see two applications in the dialog.

	[image: filter_pipeline]

Reordering Filters

The order in which the filters are applied can be changed in the south service dialog by clicking and dragging one filter above another in the Applications section of dialog.

	[image: filter_reorder]

Filters are executed in a top to bottom order always. It may not matter in some cases what order a filter is executed in, in others it can have significant effect on the result.

Editing Filter Configuration

A filters configuration can be altered from the south service dialog by selecting the down arrow to the right of the filter name. This will open the edit area for that filter and show the configuration that can be altered.

	[image: filter_edit]

You can also remove a filter from the pipeline of filters by select the trash can icon at the bottom right of the edit area for the filter.

Adding Filters To The North

Filters can also be added to the north in the same way as the south. The same set of filters can be applied, however some may be less useful in the north than in the south as they apply to all assets that are sent north.

In this example we will use the metadata filter to label all the data that goes north as coming via a particular Fledge instance. As with the South service we start by selecting our north task from the North menu item in the left-hand menu bar.

	[image: filter_north]

At the bottom of the dialog there is a Applications area, you may have to scroll the dialog to find it, click on the + icon. A selection dialog appears that allows you to select the filter to use. Select the metadata filter.

	[image: filter_select]

After clicking Next you will be shown the configuration page for the particular filter you have chosen. We will edit the JSON that defines the metadata tags to add and set a name of floor and a value of 1.

	[image: filter_floor]

After enabling and clicking on Done we save the north changes. All assets sent to this PI Server connection will now be tagged with the tag “floor” and value “1”.

Although this is a simple example of labeling data other things can be done here, such as limiting the rate we send data to the PI Server until an interesting condition becomes true, perhaps to save costs on an expensive link or prevent a network becoming loaded until normal operating conditions. Another option might be to block particular assets from being sent on this link, this could be useful if you have two destinations and you wish to send a subset of assets to each.

This example used a PI Server as the destination, however the same mechanism and filters may be used for any north destination.

Some Useful Filters

A number of simple filters are worthy of mention here, a complete list of the currently available filters in Fledge can be found in the section Filter Plugins.

Scale

The filter fledge-filter-scale applies a scale factor and offset to the numeric values within an asset. This is useful for operations such as changing the unit of measurement of a value. An example might be to convert a temperature reading from Centigrade to Fahrenheit.

Metadata

The filter fledge-filter-metadata will add metadata to an asset. This could be used to add information such as unit of measurement, machine data (make, model, serial no) or the location of the asset to the data.

Delta

The filter fledge-filter-delta allows duplicate data to be removed, only forwarding data that changes by more than a configurable percentage. This can be useful if a value does not change often and there is a desire not to forward all the similar values in order to save network bandwidth or reduce storage requirements.

Rate

The filter fledge-filter-rate is similar to the delta filter above, however it forwards data at a fixed rate that is lower the rate of the oncoming data but can send full rate data should an interesting condition be detected. The filter is configured with a rate to send data, the values sent at that rate are an average of the values seen since the last value was sent.

A rate of one reading per minute for example would average all the values for 1 minute and then send that average as the reading at the end of that minute. A condition can be added, when that condition is triggered all data is forwarded at full rate of the incoming data until a further condition is triggered that causes the reduced rate to be resumed.

Fledge Architecture

The following diagram shows the architecture of Fledge:

	Components in blue are plugins. Plugins are light-weight modules that enable Fledge to be extended. There are a variety of types of plugins: south-facing, north-facing, storage engine, filters, event rules and event delivery mechanisms. Plugins can be written in python (for fast development) or C++ (for high performance).

	Components with a blue line at the top of the box are microservices. They can co-exist in the same operating environment or they can be distributed across multiple environments.

[image: fledge_architecture]

Fledge Core

The Core microservice coordinates all of the Fledge operations. Only one Core service can be active at any time.

Core functionality includes:

Scheduler: Flexible scheduler to bring up processes.

Configuration Management: maintain configuration of all Fledge components. Enable software updates across all Fledge components.

Monitoring: monitor all Fledge components, and if a problem is discovered (such as an unresponsive microservice), attempt to self-heal.

REST API: expose external management and data APIs for functionality across all components.

Backup: Fledge system backup and restore functionality.

Audit Logging: maintain logs of system changes for auditing purposes.

Certificate Storage: maintain security certificates for different components, including south services, north services, and API security.

User Management: maintain authentication and permission info on Fledge administrators.

Asset Browsing: enable querying of stored asset data.

Storage Layer

The Storage microservice provides two principal functions: a) maintenance of Fledge configuration and run-time state, and b) storage/buffering of asset data. The type of storage engine is pluggable, so in installations with a small footprint, a plugin for SQLite may be chosen, or in installations with a high number of concurrent requests and larger footprint Postgresql may be suitable. In micro installations, for example on Edge devices, or when high bandwidth is required, an in-memory temporary storage may be the best option.

South Microservices

South microservices offer bi-directional communication of data and metadata between Edge devices, such as sensors, actuators or PLCs and Fledge. Smaller systems may have this service installed onboard Edge devices. South components are typically deployed as always-running services, which continuously wait for new data.

North Microservices

North microservices offer bi-directional communication of data and metadata between the Fledge platform and larger systems located locally or in the cloud. Larger systems may be private and public Cloud data services, proprietary solutions or Fledge instances with larger footprints. North components are typically deployed as one-shot tasks, which periodically spin up and send data which has been batched, then spin down. However, they can also be deployed as continually-running services.

Filters

Filters are plugins which modify streams of data that flow through Fledge. They can be deployed at ingress (in a South service), or at egress (in a North service). Typically, ingress filters are used to transform or enrich data, and egress filters are used to reduce flow to northbound pipes and infrastructure, i.e. by compressing or reducing data that flows out. Multiple filters can be applied in “pipelines”, and once configured, pipelines can be applied to multiple south or north services.

A sample of existing Filters:

Expression: apply an arbitrary mathematical equation across one or more assets.

Python35: run user-specified python code across one or more assets.

Metadata: apply tags to data, to note the device/location it came from, or to attribute data to a manufactured part.

RMS/Peak: summarize vibration data by generating a Root Mean Squared (RMS) across n samples.

FFT: generate a Fast Fourier Transform (FFT) of vibration data to discover component waveforms.

Delta: Only send data that has changed by a specified amount.

Rate: buffer data but don’t send it, then if an error condition occurs, send the previous data.

Contrast: Enhance the contrast of image type data

Filters may be concatenated together to form a data pipeline from the data source to the storage layer, in the south microservice. Of from the storage layer to the destination in the north.

	[image: pipelines]

This allows for data processing to be built up via the graphical interface of Fledge with little or no coding required. Filters that are applied in a south service will affect all out going streams whilst those applied in the north only affect the data that is sent on that particular connection to an external system.

Event Service

The event engine maintains zero or more rule/action pairs. Each rule subscribes to desired asset data, and evaluates it. If the rule triggers, its associated action is executed.

Data Subscriptions: Rules can evaluate every data point for a specified asset, or they can evaluate the minimum, maximum or average of a specified window of data points.

Rules: the most basic rule evaluates if values are over/under a specified threshold. The Expression plugin will evaluate an arbitrary math equation across one or more assets. The Python35 plugin will execute user-specified python code to one or more assets.

Actions: A variety of delivery mechanisms exist to execute a python application, create arbitrary data, alter the configuration of Fledge, send a control message, raise a ticket in a problem ticking system or email/slack/hangout/communicate a message.

Set Point Control Service

Fledge is not designed to replace real time control systems, it does however allow for non-time-critical control using the control microservice. Control messages may originate from a number of sources; the north microservice, the event service, the REST API or from scheduled events. It is the job of the control service to route these control messages to the correct destination. It also provides a simple form of scripting to allow control messages to generate chains of writes and operations on the south service and also modify the configuration of the Fledge itself.

REST API

The Fledge API provides methods to administer Fledge, and to interact with the data inside it.

Graphical User Interface

A GUI enables administration of Fledge. All GUI capability is through the REST API, so Fledge can also be administered through scripts or other management tools. The GUI contains pages to:

Health: See if services are responsive. See data that’s flowed in and out of Fledge

Assets & Readings: analytics of data in Fledge

South: manage south services

North: manage north services

Notifications: manage event engine rules and delivery mechanisms

Configuration Management: manage configuration of all components

Schedules: flexible scheduler management for processes and tasks

Certificate Store: manage certificates

Backup & Restore: backup/restore Fledge

Logs: see system, notification, audit, packages and tasks logging information

Support: support bundle contents with system diagnostic reports

Settings: set/reset connection and GUI related settings

Buffering & Storage

One of the micro-services that makes up the core of a Fledge
implementation is the storage micro-service. This is responsible for

	storing the configuration of Fledge

	buffering the data read from the south

	maintaining the Fledge audit log

	persisting the state of the system

The storage service is configurable, like other services within Fledge
and uses plugins to extend the functionality of the storage system. These
storage plugins provide the underlying mechanism by which data is
stored within Fledge. Fledge can make use of either one or two of these
plugins at any one time. If a single plugin is used then this plugin
provides the storage for all data. If two plugins are used, one will
be for the buffering of readings and the other for the storage of the
configuration.

As standard Fledge comes with 3 storage plugins

	SQLite: A plugin that can store both configuration data and the readings data using SQLite files as the backing store. The plugin uses multiple SQLite database to store different assets, allowing for high bandwidth data at the expense of limiting the number of assets that a single instance can ingest.,

	SQLiteLB: A plugin that can store both configuration data and the readings data using SQLite files as the backing store. This version of the SQLite plugin uses a single readings database and is better suited for environments that do not have very high bandwidth data. It does not limit the number of distinct assets that can be ingested.

	PostgreSQL: A plugin that can store both configuration and readings data which uses the PostgreSQL SQL server as a storage medium.

	SQLiteMemory: A plugin that can only be used to store reading data. It uses SQLite’s in memory storage engine to store the reading data. This provides a high performance reading store however capacity is limited by available memory and if Fledge is stopped or there is a power failure the buffered data will be lost.

The default configuration uses the SQLite disk based storage engine for
both configuration and reading data

Configuring The Storage Plugin

Once installed the storage plugin can be reconfigured in much the same
way as any Fledge configuration, either using the API or the graphical
user interface to set the storage engine and its options.

	Using the user interface to configuration the storage, select the Configuration item in the left hand menu bar.

	[image: storage_01]

	In the category pull down menu select Advanced.

	[image: storage_02]

	To change the storage plugin to use for both configuration and readings enter the name of the new plugin in the Storage Plugin entry field. If Readings Plugin is left empty then the storage plugin will also be used to store reading data. The default set of plugins installed with Fledge that can be used as Storage Plugin values are:

	sqlite - the SQLite file based storage engine.

	postgres - the PostgreSQL server. Note the Postgres server is not installed by default when Fledge is installed and must be installed before it can be used.

	The Readings Plugin may be set to any of the above and may also be set to use the SQLite In Memory plugin by entering the value sqlitememory into the configuration field.

	The Database threads field allows for the number of threads used for database housekeeping to be controlled. In normal circumstances 1 is sufficient. If performance issues are seen this can be increased however it is rarely required to be greater than 1 and can have counter productive effects on heavily loaded systems.

	The Manage Storage option is only used when the database storage uses an external database server, such as PostgreSQL. Toggling this option on causes Fledge to start as stop the database server when Fledge is started and stopped. If it s left off then Fledge will assume the database server is running when it starts.

	The Management Port and Service Port options allow fixed ports to be assigned to the storage service. These settings are for debugging purposes only and the values should be set to 0 in normal operation.

Note: Additional storage engines may be installed to extend the set
that is delivered with the standard Fledge installation. These will be
documented in the packages that provide the storage plugin.

Storage plugin configurations are not dynamic and Fledge must be
restarted after changing these values. Changing the plugin used to store
readings will not cause the data in the previous storage system to be
migrated to the new storage system and this data may be lost if it has
not been sent onward from Fledge.

SQLite Plugin Configuration

The SQLite plugin has a more complex set of configuration options that can be used to configure how and when it creates more database to accommodate ore distinct assets. This plugin is designed to allow greater ingest rates for readings by separating the readings for each asset into a database table for that asset. It does however result in limiting the number of distinct assets that can be handled due to the requirement to handle large number of database files.

	[image: sqlite_01]

	Purge Exclusions: This option allows the user to specify that the purge process should not be applied to particular assets. The user can give a comma separated list of asset names that should be excluded from the purge process. Note, it is recommended that this option is only used for extremely low bandwidth, lookup data that would otherwise be completely purged from the system when the purge process runs.

	Pool Size: The number of connections to create in the database connection pool.

	No. Readings per database: This option control how many assets can be stored in a single database. Each asset will be stored in a distinct table within the database. Once all tables within a database are allocated the plugin will use more databases to store further assets.

	No. databases allocate in advance: This option defines how many databases are create initially by the SQLite plugin.

	Database allocation threshold: The number of unused databases that must exist within the system. Once the number of available databases falls below this value the system will begin the process of creating extra databases.

	Database allocation size: The number of databases to create when the above threshold is crossed. Database creation is a slow process and hence the tuning of these parameters can impact performance when an instance receives a large number of new asset names for which it has previously not allocated readings tables.

Installing A PostgreSQL server

The precise commands needed to install a PostgreSQL server vary for system
to system, in general a packaged version of PostgreSQL is best used and
these are often available within the standard package repositories for
your system.

Ubuntu Install

On Ubuntu or other apt based distributions the command to install postgres:

sudo apt install -y postgresql postgresql-client

Now, make sure that PostgreSQL is installed and running correctly:

sudo systemctl status postgresql

Before you proceed, you must create a PostgreSQL user that matches your Linux user. Supposing that user is <fledge_user>, type:

sudo -u postgres createuser -d <fledge_user>

The -d argument is important because the user will need to create the Fledge database.

A more generic command is:

sudo -u postgres createuser -d $(whoami)

SQLite Plugin Configuration

The SQLite storage engine has further options that may be used to
configure its behavior. To access these configuration parameters click
on the sqlite option under the Storage category in the configuration
page.

	[image: storage_03]

Many of these configuration options control the performance of SQLite and
it is important to have some background on how readings are stored within
SQLite. The storage plugin stores readings for each distinct asset in
a table for that asset. These tables are stored within a database. In
order to improve concurrency multiple databases are used within the
storage plugin. A set of parameters are used to define how these tables
and databases are used.

	Pool Size: The number of connections to maintain to the database server.

	No. Readings per database: This controls the number of different assets that will be stored in each database file within SQLite.

	No. databases to allocate in advance: The number of SQLite databases that will be created at startup.

	Database allocation threshold: The point at which new databases are created. If the number of empty databases falls below this value then an other set of databases will be created.

	Database allocation size: The number of database to allocate each time a new set of databases is required.

The setting of these parameters also imposes an upper limit on the number
of assets that can be stored within a Fledge instance as SQLite has a
maximum limit of 61 databases that can be in use at any time. Therefore
the maximum number of readings is 60 times the number of readings per
database. One database is reserved for the configuration data.

Storage Management

Fledge manages the amount of storage used by means of purge processes that run periodically to remove older data and thus limit the growth of storage use. The purging operations are implemented as Fledge tasks that can be scheduled to run periodically. There are two distinct tasks that are run

	purge: This task is responsible for limiting the readings that are maintained within the Fledge buffer.

	system purge: This task limit the amount of system data in the form of logs, audit trail and task history that is maintained.

Purge Task

The purge task is run via a scheduled called purge, the default for this schedule is to run the purge task every hour. This can be modified via the user interface in the Schedules menu entry or via the REST API by updating the schedule.

The purge task has two metrics it takes into consideration, the age of the readings within the system and the number of readings in the system. These can be configured to control how much data is retained within the system. Note however that this does not mean that there will never be data older than specified or more rows than specified as purge runs periodically and between executions of the purge task the readings buffered will continue to grow.

The configuration of the purge task can be found in the Configuration menu item under the Utilities section.

	[image: purge_01]

	Age Of Data To Be Retained: This configuration option sets the limit on how old data has to be before it is considered for purging from the system. It defines a value in hours, and only data older than this is considered for purging from the system.

	Max rows of data to retain: This defines how many readings should be retained in the buffer. This can override the age of data to retain and defines the maximum allowed number of readings that should be in the buffer after the purge process has completed.

	Retain Unsent Data: This defines how to treat data that has been read by Fledge but not yet sent onward to one or more of the north destinations for data. It supports a number of options

	[image: purge_02]

	purge unsent: Data will be purged regardless if it has been sent onward from Fledge or not.

	retain unsent to any destination: Data will not be purged, i.e. it will be retained, if it has not been sent to any of the north destinations. If it has been sent to at least one of the north destinations then it will be purged.

	retain unset to all destinations: Data will be retained until it has been sent to all north destinations that are enabled at the time the purge process runs. Disabled north destinations are not included in order to prevent them from stopping all data from being purged.

Note: This configuration category will not appear until after the purge process has run for the first time. By default this will be 1 hour after the Fledge instance is started for the first time.

System Purge Task

The system purge task is run via a scheduled called system_purge, the default for this schedule is to run the system purge task every 23 hours and 50 minutes. This can be modified via the user interface in the Schedules menu entry or via the REST API by updating the schedule.

The configuration category for the system purge can be found in the Configuration menu item under the Utilities section.

	[image: purge_03]

	Statistics Retention: This defines the number of days for which full statistics are held within Fledge. Statistics older than this number of days are removed and only a summary of the statistics is held.

	Audit Retention: This defines the number of day for which the audit log entries will be retained. Once the entries reach this age they will be removed from the system.

	Task Retention: This defines the number of days for which history if task execution within Fledge is maintained.

Note: This configuration category will not appear until after the system purge process has run for the first time.

Additional Services

The following additional services are currently available to extend the functionality of Fledge. These are optional services not installed as part of the base Fledge installation.

	Notifications Service
	Notifications
	Notification Rules

	Notification Types
	One shot

	Toggle

	Retriggered

	Notification Delivery

	Installing the Notification Service
	Building Notification Service

	Installing Notification Service Package

	Starting The Notification Service

	Configuring The Notification Service

	Using The Notification Service
	Add A Notification
	Notification Log

	Editing Notifications

Notifications Service

Fledge supports an optional service, known as the notification service that adds an event engine to the Fledge installation. The notification services observed data as it flows into the Fledge storage service buffer and processes that data against a set of rules that are configurable by the user to determine if an event has occurred. Events may be either when a condition that was previously not met being is, or a condition that was previously met becoming no longer true. The notification service can then send a notification when an event occurs or, in the case of a condition that is met, it can send notifications as long as that condition is met.

The notification services operates on data that is in the storage layer, and is independent of the individual south services. This means that the notification rules can use data from several south services to evaluate if a condition has occurred. Also the data that is observed by the notification is after any filtering rules have been applied in the south services but before any filtering that occurs in the north tasks. The mechanism used to allow the notification service to observe data is that the notifications register with the storage service to be given the values for particular assets as they arrive at the storage service. A notification may register for several assets and is free to buffer that data internally within the notification service. This registration does not impact how the data that is requested is treated in the rest of the system; it will still for example follow the normal processing rules to be sent onward to the north systems.

Notifications

The notification services manages Notifications, these are a set of parameters that it uses to determine if an event has occurred and a notification delivery should be made on the basis of that event.

A notification within the notification service consists of;

	A notification rule plugin that contains the logic to evaluate if a rule has been triggered, thus creating an event.

	A set of assets that are required to execute a notification rule.

	Information that defines how the data for each asset should be delivered to the notification rule.

	Configuration for the rule plugin that customizes that logic to this notification instance.

	A delivery plugin that provides the mechanism to delivery an event to destination for the notification.

	Configuration that may be required for the delivery plugin to operate.

Notification Rules

Notification rules are the logic that is used by the notification to determine if an event has occurred or not. An event is basically based on the values of a number of attributes, either at a single point in time or over a period of time. The notification services is delivered with one built in rule, this is a very simple rule called the threshold rule it simply looks at a single asset to determine if the value of a datapoint within the asset goes above or below a set value.

A notification rule has associated with it a set of configuration options, these define how the plugin behaves but also what data the plugin requires to execute the evaluation logic within the plugin. These configuration parameters can be divided into two sets; those items that define the data the rule requires from the notification service itself and those that relate directly to the logic of the rule.

A rule may work across one or more assets, the assets it requires are configured in the rule configuration and passed the the notification service to enable the service to subscribe to those assets and be sent that data by the storage service. A rule plugin may ask for every value of the asset as it changes or it may ask for a window of data. A window is defined as the values of an asset within a given time frame. An example might be the last 10 minutes of values. In the case of the window the rule may be passed the average value, minimum, maximum or all values in that window. The requirements about how data is delivered to a rule may be hard coded within the logic of a rule or may be part of the configuration a user of the rule should provide.

The second type of configuration parameter a rule might include are those that control the logic itself, in the example of the threshold rule this would be the threshold value itself and the control if the event is considered to have triggered if the value is above or below the threshold.

The section Notification Rule Plugins contains a full list of currently available rule plugins for Fledge. As with other plugin types they are designed to be easily written by end users and developers, a guide is available for anyone wishing to write a notification rule plugin of their own.

Notification Types

Notifications can be delivered under a number of different conditions based on the state returned from a notification rule and how it related to the previous state returned by the notification rule, this is known as the notification type. A notification may be one of three types, these types are used to define when and how often notification are delivered.

One shot

A one shot notification is sent once when the notification triggers but will not be resent again if the notification triggers on successive evaluations. Once the evaluation does not trigger, the notification is cleared and will be sent again the next time the notification rule triggers.

One shot notifications may be further tailored with a maximum repeat frequency, e.g. no more than once in any 15 minute period.

Toggle

A toggle notification is sent when the notification rule triggers and will not be resent again until the rule fails to trigger, in exactly the same way as a one shot trigger. However in this case when the notification rule first stops triggering a cleared notification is sent.

Again this may be modified by the addition of a maximum repeat frequency.

Retriggered

A retriggered notification will continue to be sent when a notification rule triggers. The rate at which the notification is sent can be controlled by a maximum repeat frequency, e.g. send a notification every 5 minutes until the condition fails to trigger.

Notification Delivery

The notification service does not natively support any form of notification delivery, it relies upon a notification delivery plugin in order to delivery a notification of an event to a user or external system that should be alerted to the event that has occurred. Typical notification deliveries might be to alert a user via some form of paging or messaging system, push an event to an external application by sending some machine level message, execute an external program or code segment to make an action occur, switching on an indication light or in extreme cases maybe shutting down a machine for which a critical fault has been detected. The section Notification Delivery Plugins contains a full list of currently available notification delivery plugins, however like other plugins these are easily extended and a guide is available for writing notification plugins to extend the available set of plugins.

Installing the Notification Service

The notification service is not part of the base Fledge installation and is not a plugin, it is a separate microservice dedicated to the detection of events and the sending of notifications.

Building Notification Service

As with Fledge itself there is always the option to build the notification service from the source code repository. This is only recommended if you also built your Fledge from source code, if you did not then you should first do this before building the notification, otherwise you should install a binary package of the notification service.

The steps involved in building the notification service, assuming you have already built Fledge itself and the environment variable FLEDGE_ROOT points to where you built your Fledge, are;

$ git clone https://github.com/fledge-iot/fledge-service-notification.git
...
$ cd fledge-service-notification
$./requirements.sh
...
$ mkdir build
$ cd build
$ cmake ..
...
$ make
...

This will result in the creation of a notification service binary, you now need to copy that binary into the Fledge installation. There are two options here, one if you used make install to create your installation and the other if you are running directly form the build environment.

If you used make install to create your Fledge installation then simply run make install to install your notification service. This should be run from the build directory under the fledge-service-notification directory.

$ make install

Note

You may need to run make install under a sudo command if your user does not have permissions to write to the installation directory. If you use a DESTDIR=… option to the make install of Fledge then you should use the same DESTDIR=… option here also.

If you are running your Fledge directly from the build environment, then execute the command

$ cp ./C/services/notification/fledge.services.notification $FLEDGE_ROOT/services

Installing Notification Service Package

If you are using the packaged binaries for you system then you can use the package manager to install the fledge-service-notification package. The exact command depends on your package manager and how you obtained your packages.

If you downloaded you packages then you should navigate to the directory that contains your package files and run the package manager. If you have deb package files run the command

$ sudo apt -y install ./fledge-service-notification-1.7.0-armhf.deb

Note

The version number, 1.7.0 may be different on your system, this will depend which version you have downloaded. Also the armhf may be different for your machine architecture. Verify the precise name of your package before running the above command.

If you are using a RedHat or CentOS distribution and have rpm package files then run the command

$ sudo yum -y localinstall ./fledge-service-notification-1.7.0-x86_64.deb

Note

The version number, 1.7.0 may be different on your system, this will depend which version you have downloaded. Verify the precise name of your package before running the above command.

If you have configured your system to search a package repository that contains the Fledge packages then you can simply run the command

$ sudo apt-get -y install fledge-service-notification

On a Debian/Ubuntu system, or

$ sudo yum -y install fledge-service-notification

On a RedHat/CentOS system. This will install the latest version of the notification service on your machine.

Starting The Notification Service

Once installed you must configure Fledge to start the notification service. This is simply done form the GUI by selecting the Notifications option from the left-hand menu. In the page that is then shown you will see a panel at the top that allows you to add & enable now the notification service. This only appears if one has not already be added.

	[image: add_notification_service]

Select this link to add & enable now the notification service, a new dialog will appear that allows you to name and enable your service.

	[image: enable_notify_service]

Configuring The Notification Service

Once the notification service has been added and enabled a new icon will appear in the Notifications page that allows you to configure the notification service. The icon appears in the top right and is in the shape of a gear wheel. [image: notification_settings_icon]

Clicking on this icon will display the notification service configuration dialog.

	[image: notification_settings]

You can use this dialog to control the level of logging that is done from the service by setting the Minimum Log Level to the least severity log level you wish to see. All log entries at the select level and of greater severity will be logged.

It is also possible to set the number of threads that will be used for delivering notifications. This defines how many notifications can be delivered in parallel. This only needs to be increased if the delivery process of any of the in use delivery plugins are long running.

The final setting allows you to disable the notification service.

Once you have updated the configuration of the service click on Save.

It is also possible to delete the notification service using the Delete Service button at the bottom of this dialog.

Using The Notification Service

Add A Notification

In order to add s notification, select the Notifications page in the left-hand menu, an empty set of notifications will appear.

	[image: empty_notifications]

Click on the + icon to add a new notification.

	[image: notification_1]

You will be presented with a dialog to enter a name and description for your notification.

	[image: notification_2]

Enter text for the name you require, a suggested description will be automatically added, however you can modify this to any string you desire. When complete click on the Next button to move forwards in the definition process. You can always click on Previous to go back a screen and modify what has been entered.

	[image: notification_3]

You are presented with the set of installed rules on the system. If the rule you wish to use is not installed and you wish to install it then use the link available plugins to be presented with the list of plugins that are available to be installed.

Note

The available plugins link will only work if you have added the Fledge package repository to the package manager of your system.

When you select a rule plugin a short description of what the rules does will be displayed to the right of the list. In this example we will use the threshold rule that is built into the notification service. Click on Next once you have selected the rule you wish to use.

	[image: notification_4]

You will be presented with the configuration parameters applicable to the rule you have chosen. Enter the name of the asset and the datapoint within that asset that you wish the rule to operate on. In the case of the threshold rule you can also define if you want the rule to trigger if the value is greater than, greater than or equal, less than or less than or equal to a Trigger value.

You can also choose to look at Single Item or Window data. If you choose the later you can then choose to define if the minimum, maximum or average within the window that must cross the threshold value.

	[image: notification_5]

Once you have set the parameters for the rule click on the Next button to select the delivery plugin to use to delivery the notification data.

	[image: notification_6]

A list of available delivery plugins will be presented, along with a similar link that allows you to install new delivery plugins if desired. As you select a plugin a short text description will be displayed to the right of the plugin list. In this example we will select the Slack messaging platform for the delivery of the notification.

Once you have selected the plugin you wish to use click on the Next button.

	[image: notification_7]

You will then be presented with the configuration parameters the delivery plugin requires to deliver the notification. In the case of the Slack plugin this consists of the webhook that you should obtain from the Slack application and a message text that will be sent when the event triggers.

Note

You may disable the delivery of a notification separately to enabling or disabling the notification. This allows you to test the logic of a notification without delivering the notification. Entries will still be made in the notification log when delivery is disabled.

Once you have completed the configuration of the delivery plugin click on Next to move to the final stage in setting up your notification.

	[image: notification_8]

The final stage of setting up your configuration is to set the notification type and the retrigger time for the notification. Enable the notification and click on Done to complete setting up your notification.

After a period of time, when a sinusoid value greater than 0.5 is received, a message will appear in your Slack window.

	[image: slack]

This will repeat at a maximum rate defined by the Retrigger Time whenever a value of greater than 0,5 is received.

Notification Log

You can see activity related to the notification service by selecting the Notifications option under Logs in the left-hand menu.

	[image: notification_log]

You may filter this output using the drop down menus along the top of the page. The list to the left defines the type of event that you filter, clicking on this list will show you the meaning of the different audit types.

	[image: notification_log_type]

Editing Notifications

It is possible to update existing notifications or remove them using the Notifications option from the left-hand menu. Clicking on Notifications will bring up a list of the currently defined notifications within the system.

	[image: notification_list]

Click on the name of the notification of interest to display the details of that notification and allow it to be edited.

	[image: notification_edit]

A single page dialog appears that allows you to change any of the parameters of you notification.

Note

You can not change the rule plugin or delivery plugin you are using. If you wish to change either of these then you must delete this notification and create a new one with the desired plugins.

Once you have updated your notification click Save to action the changes.

If you wish to delete your notification this may be done by clicking the Delete button at the base of the dialog.

Fledge Control Features

Fledge supports facilities that allows control of devices via the south service and plugins. This control in known as set point control as it is not intended for real time critical control of devices but rather to modify the behavior of a device based on one of many different information flows. The latency involved in these control operations is highly dependent on the control path itself and also the scheduling limitations of the underlying operating system. Hence the caveat that the control functions are not real time or guaranteed to be actioned within a specified time window.

Control Functions

The are two type of control function supported

	Modify the value in a device via the south service and plugin.

	Request the device to perform an action.

Set Point

Setting the value within the device is known as a set point action in Fledge. This can be as simple as setting a speed variable within a controller for a fan or it may be more complete. Typically a south plugin would provide a set of values that can be manipulated, giving each a symbolic name that would be available for a set point command. The exact nature of these is defined by the south plugin.

Operation

Operations, as the name implies provides a means for the south service to request a device to perform an operation, such as reset or re-calibrate. The names of these operations and any arguments that can be given are defined within the south plugin and are specific to that south plugin.

Control Paths

Set point control may be invoked via a number of paths with Fledge

	As the result of a notification within Fledge itself.

	As a result of a request via the Fledge public REST API.

	As a result of a control message flowing from a north side system into a north plugin and being routed onward to the south service.

Currently only the notification method is fully implemented within Fledge.

The use of a notification in the Fledge instance itself provides the fastest response for an edge notification. All the processing for this is done on the edge by Fledge itself.

Edge Based Control

Edge based control is the name we use for a class of control applications that take place solely within the Fledge instance at the edge. The data that is required for the control decision to be made is gathered in the Fledge instance, the logic to trigger the control action runs in the Fledge instance and the control action is taken within the Fledge instance. Typically this will involve one or more south plugins to gather the data required to make the control decision, possibly some filters to process that data, the notification engine to make the decision and one or more south services to deliver the control messages.

As an example of how edge based control might work lets consider the following case.

We have a machine tool that is being monitored by Fledge using the OPC/UA south plugin to read data from the machine tools controlling PLC. As part of that data we receive an asset which contains the temperature of the motor which is running the tool. We can assume this asset is called MotorTemperature and it contains a single data point called temperature.

We also have a fan unit that is able to cool that motor which is controlled via a Modbus interface. The modbus contains one a coil that toggles the fan on and off and a register that controls the speed of the fan. We configure the fledge-south-modbus as a service called MotorFan with a control map that will map the coil and register to a pair of set points.

{
 "values" : [
 {
 "name" : "run",
 "coil" : 1
 },
 {
 "name" : "speed",
 "register" : 1
 }
]
}

	[image: setpoint_1]

If the measured temperature of the motor going above 35 degrees centigrade we want to turn the fan on at 1200 RPM. We create a new notification to do this. The notification uses the threshold rule and triggers if the asset MotorTemperature, data point temperature is greater than 35.

	[image: setpoint_2]

We select the setpoint delivery plugin from the list and configure it.

	[image: setpoint_3]

	In Service we set the name of the service we are going to use to control the fan, in this case MotorFan

	In Trigger Value we set the control message we are going to send to the service. This will turn the fan on and set the speed to 1200RPM

	In Cleared Value we set the control message we are going to send to turn off the fan when the value falls below 35 degrees.

The plugin is enabled and we go on to set the notification type to toggled, since we want to turn off the fan if the motor cools down, and set a retrigger time to prevent the fan switching on and off too quickly. The notification type and the retrigger time are important parameters for tuning the behavior of the control system and are discussed in more detail below.

If we required the fan to speed up at a higher temperature then this could be achieved with a second notification. In this case it would have a higher threshold value and would set the speed to a higher value in the trigger condition and set it back to 1200 in the cleared condition. Since the notification type is toggled the notification service will ensure that these are called in the correct order.

Data Substitution

There is another option that can be considered in our example above that would allow the fan speed to be dependent on the temperature, the use of data substitution in the setpoint notification delivery.

Data substitution allows the values of a data point in the asset that caused the notification rule to trigger to be substituted into the values passed in the set point operation. The data that is available in the substitution is the same data that is given to the notification rule that caused the alert to be triggered. This may be a single asset with all of its data points for simple rules or may be multiple assets for more complex rules. If the notification rule is given averaged data then it is these averages that will be available rather than the individual values.

Parameters are substituted using a simple macro mechanism, the name of an asset and data point with in the asset is inserted into the value surrounded by the $ character. For example to substitute the value of the temperature data point of the MotorTemperature asset into the speed set point parameter we would define the following in the Trigger Value

{
 "values" : {
 "speed" : "$MotorTemperature.temperature$"
}

Note that we separate the asset name from the data point name using a period character.

This would have the effect of setting the fan speed to the temperature of the motor. Whilst allowing us to vary the speed based on temperature it would probably not be what we want as the fan speed is too low. We need a way to map a temperature to a higher speed.

A simple option is to use the macro mechanism to append a couple of 0s to the temperature, a temperature of 21 degrees would result in a fan speed of 2100 RPM.

{
 "values" : {
 "speed" : "$MotorTemperature.temperature$00"
}

This works, but is a little primitive and limiting. Another option is to add data to the asset that triggers the notification. In this case we could add an expression filter to create a new data point with a desired fan speed. If we were to add an expression filter and give it the expression desiredSpeed = temperature > 20 ? temperature * 50 + 1200 : 0 then we would create a new data point in the asset called desiredSpeed. The value of desiredSpeed would be 0 if the temperature was 20 degrees or below, however for temperatures above it would be 1200 plus 50 times the temperature.

This new desired speed can then be used to set the temperature in the setpoint notification plugin.

{
 "values" : {
 "speed" : "$MotorTemperature.desiredSpeed$"
 }
}

The user then has the choice of adding the desired speed item to the data stored in the north, or adding an asset filter in the north to remove this data point form the data that is sent onward to the north.

Tuning edge control systems

The set point control features of Fledge are not intended to replace real time control applications such as would be seen in PLCs that are typically implemented in ladder logic, however Fledge does allow for high performance control to be implemented within the edge device. The precise latency in control decisions is dependent on a large number of factors and there are various tuning parameters that can be used to reduce the latency in the control path.

In order to understand the latency inherent in the control path we should first start my examining that path to discover where latency can occur. To do this will will choose a simple case of a single south plugin that is gathering data required by a control decision within Fledge. The control decision will be taken in a notification rule and delivered via the fledge-notify-setpoint plugin to another south service.

A total of four services within Fledge will be involved in the control path

	[image: edge_control_path]

	the south service that is gathering the data required for the decision

	the storage service that will dispatch the data to the notification service

	the notification service that will run the decision rule and trigger the delivery of the control message

	the south service that will send the control input to the device that is being controlled

Each of these services can add to that latency in the control path, however the way in which these are configured can significantly reduce that latency.

The south service that is gathering the data will typically being either be polling a device or obtaining data asynchronously from the device. This will be sent to the ingest thread of the south service where it will be buffered before sending the data to the storage service.

The advanced settings for the south service can be used to trigger how often that data is sent to the storage service. Since it is the storage service that is responsible for routing the data onward to the notification service this impacts the latency of the delivery of the control messages.

	[image: advanced_south]

The above shows the default configuration of a south service. In this case data will not be sent to the south service until there are either 100 readings buffered in the south service, or the oldest reading in the south service buffer has been in the buffer for 5000 milliseconds. In this example we are reading 1 new readings every second, therefore will send data to the storage service every 5 seconds, when the oldest reading in the buffer has been there for 5000mS. When it sends data it will send all the data it has buffered, in this case 5 readings as one block. If the oldest reading is the one that triggers the notification we have therefore introduced a 5 second latency into the control path.

The control path latency can be reduced by reducing the Maximum Reading Latency of this south plugin. This will of course put greater load on the system as a whole and should be done with caution as it increases the message traffic between the south service and the storage service.

The storage service has little impact on the latency, it is designed such that it will forward data it receives for buffering to the notification service in parallel to buffering it. The storage service will only forward data the notification service has subscribed to receive and will forward that data in the blocks it arrives at the storage service in. If a block of 5 readings arrives at the the storage service then all 5 will be sent to the notification service as a single block.

The next service in the edge control path is the notification service, this is perhaps the most complex step in the journey. The behavior of the notification service is very dependent upon how each individual notification instance has been configured, factors that are important are the notification type, the retrigger interval and the evaluation data options.

The notification type is used to determine when notifications are delivered to the delivery channel, in the case of edge control this might be the setpoint plugin or the operation plugin. Fledge implements three options for the notification type

	One shot: A one shot notification is sent once when the notification triggers but will not be resent again if the notification triggers on successive evaluations. Once the evaluation does not trigger, the notification is cleared and will be sent again the next time the notification rule triggers. One shot notifications may be further tailored with a maximum repeat frequency, e.g. no more than once in any 15 minute period.

	Toggle: A toggle notification is sent when the notification rule triggers and will not be resent again until the rule fails to trigger, in exactly the same way as a one shot trigger. However in this case when the notification rule first stops triggering a cleared notification is sent. Again this may be modified by the addition of a maximum repeat frequency.

	Retriggered: A retriggered notification will continue to be sent when a notification rule triggers. The rate at which the notification is sent can be controlled by a maximum repeat frequency, e.g. send a notification every 5 minutes until the condition fails to trigger.

It is very important to choose the right type of notification in order to ensure the data delivered in your set point control path is what you require. The other factor that comes into play is the Retrigger Time, this defines a dead period during which notifications will not be sent regardless of the notification type.

Setting a retrigger time that is too high will mean that data that you expect to be sent will not be sent. For example if you a new value you wish to be updated once every 5 seconds then you should use a retrigger type notification and set the retrigger time to less than 5 seconds.

It is very important to understand however that the retrigger time defines when notifications can be delivered, it does not related to the interval between readings. As an example, assume we have a retrigger time of 1 second and a reading that arrives every 2 seconds that causes a notification to be sent.

	If the south service is left with the default buffering configuration it will send the readings in a block to the storage service every 5 seconds, each block containing 2 readings.

	These are sent to the notification service in a single block of two readings.

	The notification will evaluate the rule against the first reading in the block.

	If the rule triggers the notification service will send the notification via the set point plugin.

	The notification service will now evaluate the rule against the second readings.

	If the rule triggers the notification service will note that it has been less than 1 second since it sent the last notification and it will not deliver another notification.

Therefore, in this case you appear to see only half of the data points you expect being delivered to you set point notification. In order to rectify this you must alter the tuning parameters of the south service to send data more frequently to the storage service.

The final hop in the edge control path is the call from the notification service to the south service and the delivery via the plugin in the south service. This is done using the south service interface and is run on a separate thread in the south service. The result would normally be expected to be very low latency, however it should be noted that plugins commonly protect against simultaneous ingress and egress, therefore if the south service being used to deliver the data to the end device is also reading data from that device, there may be a requirement for the current read to complete before the write operation an commence.

To illustrate how the buffering in the south service might impact the data sent to the set point control service we will use a simple example of sine wave data being created by a south plugin and have every reading sent to a modbus device and then read back from the modbus device. The input data as read at the south service gathering the data is a smooth sine wave,

	[image: sine_in]

The data observed that is written to the modbus device is not however a clean sine wave as readings have been missed due to the retrigger time eliminating data that arrived in the same buffer.

	[image: sine_out5]

Some jitter caused by occasional differences in the readings that arrive in a single block can be seen in the data as well.

Changing the buffering on the south service to only buffer a single reading results in a much smooth sine wave as can be seen below as the data is seen to transition from one buffering policy to the next.

	[image: sine_out_change]

At the left end of the graph the south service is buffering 5 readings before sending data onward, on the right end it is only buffering one reading.

End to End Control

The end to end control path in Fledge is a path that allows control messages to enter the Fledge system from the north and flow through to the south. Both the north and south plugins involved in the path must support control operations, a dedicated service, the control dispatcher, is used to route the control messages from the source of the control input, the north service to the objects of the control operations, via the south service and plugins. Multiple south services may receive control inputs as a result of a single north control input.

	[image: end_to_end]

It is the job of the north plugin to define how the control input is received, as this is specific to the protocol of device to the north of Fledge. The plugin then takes this input and maps it to a control message that can be routed by the dispatcher. The way this mappings is defined is specific to each of the north plugins that provide control input.

The control messages that the dispatcher is able to route are defined by the following set

	Write one or more values to a specified south service

	Write one or more values to the south service that ingests a specified asset

	Write one or more values to all south services supporting control

	Run an automation script within the dispatcher service

	Execution an operation on a specified south service

	Execute an operation on the south service that ingests a specified asset

	Execute an operation on all the south services that support control

A example of how a north plugin might define this mapping is shown below

	[image: north_map1]

In this case we have an OPCUA north plugin that offers a writable node called test, we have defined this as accepting integer values and also set a destination of service and a name of fan0213. When the OPCUA node test is written the plugin will send a control message to the dispatcher to ask it to perform a write operation on the named service.

Alternately the dispatcher can send the request based on the assets that the south service is ingesting. In the following example, again taken from the OPCUA north plugin, we send a value of EngineSpeed which is an integer within the OPCUA server that Fledge presents to the service that is ingesting the asset pump0014.

	[image: north_map2]

If browsing the OPCUA server which Fledge is offering via the north service you will see a node with the browse name EngineSpeed which when written will cause the north plugin to send a message to the dispatcher service and ultimately cause the south service ingesting pump0014 to have that value written to it;s EngineSpeed item. That south service need not be an OPCUA service, it could be any south service that supports control.

	[image: opcua_server]

It is also possible to get the dispatcher to send the control request to all services that support control. In the case of the OPCUA north plugin this is specified by omitting the other types of destination.

	[image: north_map3]

All south services that support control will be sent the request, these may be of many different types and are free to ignore the request if it can not be mapped locally to a resource to update. The semantics of how the request is treated is determined by the south plugin, each plugin receiving the request may take different actions.

The dispatcher can also be instructed to run a local automation script, these are discussed in more detail below, when a write occurs on the OPCUA node via this north plugin. In this case the control map is passed a script key and name to execute. The script will receive the value EngineSpeed as a parameter of the script.

	[image: north_map4]

Note, this is an example and does not mean that all or any plugins will use the exact syntax for mapping described above, the documentation for your particular plugin should be consulted to confirm the mapping implemented by the plugin.

Control Dispatcher Service

The control dispatcher service is a service responsible for receiving control messages from other components of the Fledge system and taking the necessary actions against the south services in order to achieve the request result. This may be as simple as forwarding the write or operation request to one to more south services or it may require the execution of an automation script by the dispatcher service.

Forwarding Requests

The service dispatcher supports three forwarding regimes which may be used to either forward write requests or operation requests, these are;

	Forward to a single service using the name of the service. The caller of the dispatcher must provide the name of the service to which the request will be sent.

	Forward to a single service that is responsible for ingesting a named asset into the Fledge system. The caller of the dispatcher must provide the name of an asset, the service dispatcher will then look this asset up in the asset tracker database to determine which service ingested the named asset. The request will then be forwarded to that service.

	Forward the request to all south services that are currently running and that support control operations. Note that if a service is not running then the request will not be buffered for later sending.

Automation Scripts

The control dispatcher service supports a limited scripting designed to allow users to easily create sequences of operations that can be executed in response to a single control write operation. Scripts are created within Fledge and named externally to any control operations and may be executed by more than one control input. These scripts consist of a linear set of steps, each of which results in one of a number of actions, the actions supported are

	Perform a write request. A new write operation is defined in the step and it may take the form of any of the three styles of forwarding supported by the dispatcher; write to a named service, write to as service providing an asset or write to all south services.

	Perform an operation request on one or all south services. As with the write request above the three forwards of defining the target south service are defined.

	Delay the execution of a script. Add a delay between execution of the script steps.

	Update the Fledge configuration. Change the value of a configuration item within the system.

	Execute another script. A mechanism for calling another named script, the named script is executed and then the calling script will continue.

The same data substitution rules described above can also be used within the steps of an automation script. This allows data that is sent to the write or operation request in the dispatcher to be substituted in the steps themselves, for example a request to run a script with the values param1 set to value1 and param2 set to value2 would result in a step that wrote the value $param1$ to a south service actually writing the value value1, i..e the value of param1.

Each step may also have associated with it a condition, if specified that condition must evaluate to true for the step to be executed. If it evaluates to false then the step is not executed and execution moves to the next step in the script.

Graphical Interface

The automation scripts are available via the Control Service menu item in the left hand menu panel. Selecting this will give you access to the user interface associated with the control functions of Fledge. Click on the Scripts tab to select the scripts, this will display a list of scripts currently defined within the system and also show an add button icon the top right corner.

	[image: automation_1]

Viewing & Editing Existing Scripts

Simply click on the name of a script to view the script

	[image: automation_2]

The steps within the script are each displayed within a panel for that step. The user is then able to edit the script provided they have permission on the script.

There are then a number of options that allow you to modify the script, note however it is not possible to change the type of a step in the script. The user must add a new step and remove the old step they wish to replace.

	To add a new step to a script click on the Add new step button

	The new step be created in a new panel and will prompt for the user to select the step type

	[image: automation_5]

	The next step in to process will depend on the type of automation step chosen.

	A Configure step will request the configuration category to update to be chosen. This is displayed in a drop down menu.

	[image: automation_6]

The configuration categories are shown as a tree structure, allowing the user to navigate to the configuration category they wish to change.

Once chosen the user is presented with the items in that configuration category from which to choose.

	[image: automation_7]

Selecting an item will give you a text box with the current value of that item. Simply type the new value that should be assigned to that item when this step of the script runs into that text box.

	A Delay step will request the duration of the delay. The Duration is merely typed into the text box and is expressed in milliseconds.

	An Operation step will request you to enter the name of the operation to perform and then select the service to which the operation request should be sent

	[image: automation_8]

Operations can be passed zero or more parameters, to add parameters to an operation click on the Add parameter option. A pair of text boxes will appear allowing you to enter the key and value for the parameter.

	[image: automation_9]

To add another parameter simply press the Add parameter option again.

	A Script step will request you to choose the name of the script to run from a list of all the currently defined scripts.

	[image: automation_10]

Note that the script that you are currently editing is not included in this list of scripts. You can then choose if you want the execution of this script to block the execution of the current script or to run in parallel with the execution of the current script.

	[image: automation_11]

Scripts may also have parameters added by choosing the Add parameter option.

	A Write step will request you to choose the service to which you wish to send the write request. The list of available services is given in a drop down selection.

	[image: automation_12]

Values are added to the write request by clicking on the Add new value option. This will present a pair of text boxes in which the key and value of the write request value can be typed.

	[image: automation_13]

Multiple values can be sent in a single write request, to add another value simply click on the Add new value option again.

	Any step type may have a condition added to it. If a step has a condition associated with it, then that condition must evaluate to true if the step is to be run executed. If it does not evaluate to true the step is skipped and the next step is executed. To add a condition to a step click on the Add condition option within the step’s panel.

	[image: automation_14]

A key and a value text box appears, type the key to test, this is usually a script parameter and the value to test. Script parameters are referenced using the $ character to enclose the name of the script parameter.

	[image: automation_15]

A selection list is provided that allows the test that you wish to perform to be chosen.

	[image: automation_16]

	To remove a step from a script click on the bin icon on the right of the step panel

	[image: automation_4]

	To reorder the steps in a script it is a simple case of clicking on one of the panels that contains a step and dragging and dropping the step into the new position within the script in which it should run.

	[image: automation_3]

	A script may have an access control list associated to it. This controls how a script can be access, it allows the script to limit access to certain services, notifications or APIs. The creation of ACLs is covered elsewhere, to associate an ACL to a script simply select the name of the ACL from the ACL drop down at foot of the screen. If not ACL is assigned access to the script will not be limited.

Adding a Script

The process for adding new scripts is similar to editing an existing script.

	To add a new script click on the Add option in the top right corner.

	Enter a name for the script in the text box that appears

	[image: automation_17]

	Now start to add the steps to you script in the same way as above when editing an existing script.

	Once you have added all your steps you may also add optional access control list

	Finally click on Save to save your script

Step Conditions

The conditions that can be applied to a step allow for the checking of the values in the original request sent to the dispatcher. For example attaching a condition of the form

speed != 0

to a step, would result in the step being executed if the value in the parameter called speed that was in the original request to the dispatcher, had a value other than 0.

Conditions may be defined using the equals and not equals operators or for numeric values also greater than and less than.

Access Control Lists

Control features within Fledge have the ability to add access control to every stage of the control process. Access control lists are used to limit which services have access to specific south services or scripts within the Fledge system.

Graphical Interface

A graphical interfaces is available to allow the creation and management of the access control lists used within the Fledge system. This is available within the Control Dispatcher menu item of the Fledge graphical interface.

	[image: ACL_1]

Adding An ACL

Click on the Add button in the top right corner of the ACL screen, the following screen will then be displayed.

	[image: ACL_2]

You can enter a name for your access control list in the Name item on the screen. You should give each of your ACLs a unique name, this may be anything you like, but should ideally be descriptive or memorable as this is the name you will use when associating the ACL with services and scripts.

The Services section is use to define a set of services that this ACL is allowing access for. You may select services either by name or by service type. Multiple services may be granted access by a single ACL.

	[image: ACL_3]

To add a named service to the ACL select the names drop down list and select the service name from those displayed. The display will change to show the service that you added to the ACL.

	[image: ACL_4]

More names may be added to the ACL by selecting the drop down again.

	[image: ACL_5]

If you wish to remove a named service from the list of services simply click on the small x to the left of the service name you wish to remove.

It is also possible to add a service type to an ACL. In this case all services of this type in the local Fledge instance will be given access via this ACL.

	[image: ACL_6]

For example to create an ACL that allows all north services to have be granted access you would select Northbound in the Services Types drop down list.

	[image: ACL_7]

The URLs section of the ACL is used to grant access to specific URLs accessing the system.

Note

This is intended to allow control access via the REST API of the Fledge instance and is currently not implemented in Fledge.

Once you are satisfied with the content of your access control list click on the Save button at the bottom of the page. You will be taken back to a display of the list of ACLs defined in your system.

	[image: ACL_8]

Updating an ACL

In the page that displays the set of ACLs in your system, click on the name of the ACL you wish to update, a page will then be displayed showing the current contents of the ACL.

	[image: ACL_9]

To completely remove the ACL from the system click on the Delete button at the bottom of the page.

You may add and remove service names and types using the same procedure you used when adding the ACL.

Once you are happy with your updated ACL click on the Save button.

Configuration

The control dispatcher service has a small number of configuration items that are available in the Dispatcher configuration category within the general Configuration menu item on the user interface.

Two subcategories exist, Server and Advanced.

Server Configuration

The server section contains a single option which can be used to either turn on or off the forwarding of control messages to the various services within Fledge. Clicking this option off will turn off all control message routing within Fledge.

Advanced Configuration

	[image: dispatcher_config]

	Minimum Log Level: Allows the minimum level at which logs will get written to the system log to be defined.

	Maximum number of dispatcher threads: Dispatcher threads are used to execute automation scripts. Each script utilizes a single thread for the duration of the execution of the script. Therefore this setting determines how many scripts can be executed in parallel.

Plugin Documentation

The following external plugins are currently available to extend the functionality of Fledge.

	Fledge South Plugins
	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Function Codes

	Set Point Control

	Error Messages

	South MQTT
	Message Payload

	MQTT Sparkplug B

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	Enviro pHAT Plugin

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management
	Certificate Requirements

	Self-Signed Certificates
	Creating a Self-Signed Certificate
	Private Key

	Subject Attributes

	Subject Alternative Name

	x509v3 Extensions
	Key Usage

	Extended Key Usage

	Encoding Options

	CSR Options

	Generating the Certificate and Private Key

	Post-Processing the Certificate and Private Key
	Converting the Certificate File

	Converting the Private Key File

	Importing the Certificate and Key Files

	SenseHAT

	Sinusoid

	System Information

	Advantech USB-4704

	Fledge North Plugins
	OMF
	PI Web API OMF Endpoint

	Edge Data Store OMF Endpoint

	OSIsoft Cloud Services OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Azure IoT Hub
	JSON Payload

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	HarperDB

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	Payload Script

	Kafka Producer

	ThingSpeak

	Fledge Filter Plugins
	Asset Filter
	Asset Rules

	Change Filter

	Delta Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Adding Python35 Filters

	Example

	Scripting Guidelines
	Importing Python Packages

	Use of Global Variables

	File IO Operations

	Threads within Python

	Interaction with External Systems

	Scripting Errors
	Error Messages & Warnings

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Threshold Filter
	Expressions

	Fledge Notification Rule Plugins
	Threshold Rule

	Moving Average Rule

	Delta Rule

	Expression Rule

	Watchdog Rule

	Fledge Notification Delivery Plugins
	Amazon Alexa Notification

	Asset Notification

	Control Dispatcher Notification
	Trigger Values

	Custom Asset Notification
	Store Configuration

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	MQTT Notification

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

Fledge South Plugins

	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Function Codes

	Set Point Control

	Error Messages

	South MQTT
	Message Payload

	MQTT Sparkplug B

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	Enviro pHAT Plugin

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management
	Certificate Requirements

	Self-Signed Certificates
	Creating a Self-Signed Certificate
	Private Key

	Subject Attributes

	Subject Alternative Name

	x509v3 Extensions
	Key Usage

	Extended Key Usage

	Encoding Options

	CSR Options

	Generating the Certificate and Private Key

	Post-Processing the Certificate and Private Key
	Converting the Certificate File

	Converting the Private Key File

	Importing the Certificate and Key Files

	SenseHAT

	Sinusoid

	System Information

	Advantech USB-4704

AM2315 Temperature & Humidity Sensor

[image: ../../_images/am2315_1.jpg]
The fledge-south-am2315 is a south plugin for a temperature and humidity sensor. The sensor connects via the I2C bus and can provide temperature data in the range -40oC to +125oC with an accuracy of 0.1oC.

The plugin will produce a single asset that has two data points; temperature and humidity.

Note

The AM2315 is only available on the Raspberry Pi as it requires an I2C bus connection

To create a south service with the AM2315 plugin

	Click on South in the left hand menu bar

	Select am2315 from the plugin list

	Name your service and click Next

	[image: am2315_2]

	Configure the plugin

	Asset Name: The name of the asset that will be created. To help when multiple AM2315 sensors are used a %M may be added to the asset name. This will be replaced with the I2C address of the sensor.

	I2C Address: The I2C address of the sensor, this allows multiple sensors to be added to the same I2C bus.

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The following table details the four connections that must be made from the sensor to the Raspberry Pi GPIO connector.

	Colour

	Name

	GPIO Pin

	Description

	Red

	VDD

	Pin 2 (5V)

	Power (3.3V - 5V)

	Yellow

	SDA

	Pin 3 (SDA)

	Serial Data

	Black

	GND

	Pin 6 (GND)

	Ground

	White

	SCL

	Pin 5 (SCL)

	Serial Clock

CC2650 SensorTag

[image: ../../_images/cc2650.jpg]
The fledge-south-cc2650 is a plugin that connects using Bluetooth to a Texas Instruments CC2650 SensorTag. The SensorTag offers 10 sensors within a small, low powered package which may be read by this plugin and ingested into Fledge. These sensors include;

	ambient light

	magnetometer

	humidity

	pressure

	accelerometer

	gyroscope

	object temperature

	digital microphone

Note

The sensor requires that you have a Bluetooth low energy adapter available that supports at least BLE 4.0.

To create a south service with the CC2650 SensorTag

	Click on South in the left hand menu bar

	Select cc2650 from the plugin list

	Name your service and click Next

	[image: cc2650_1]

	Configure the plugin

	Bluetooth Address: The Bluetooth MAC address of the device

	Asset Name Prefix: A prefix to add to the asset name

	Shutdown Threshold: The time in seconds allowed for a shutdown operation to complete

	Connection Timeout: The Bluetooth connection timeout to use when attempting to connect to the device

	Temperature Sensor: A toggle to include the temperature data in the data ingested

	Temperature Sensor Name: The data point name to assign the temperature data

	Luminance Sensor: Toggle to control the inclusion of the ambient light data

	Luminance Sensor Name: The data point name to use for the luminance data

	Humidity Sensor: A toggle to include the humidity data

	Humidity Sensor Name: The data point name to use for the humidity data

	Pressure Sensor: A toggle to control the inclusion of pressure data

	Pressure Sensor Name: The name to be used for the data point that will contain the atmospheric pressure data

	Movement Sensor: A toggle that controls the inclusion of movement data gathered from the gyroscope, accelerometer and magnetometer

	Gyroscope Sensor Name: The data point name to use for the gyroscope data

	Accelerometer Sensor Name: The name of the data point that will record the accelerometer data

	Magnetometer Sensor Name: The name to use for the magnetometer data

	Battery Data: A toggle to control inclusion of the state of charge of the battery

	Battery Sensor Name: The data point name for the battery charge percentage

	Click Next

	Enable the service and click on Done

CoAP

The fledge-south-coap plugin implements a passive CoAP listener that will accept data from sensors implementing the CoAP protocol. CoAP is an Internet application protocol for constrained devices to send data over the internet, it is similar to HTTP but may be run over UDP or TCP and is considerably simplified to allow implementation in small footprint devices. CoAP stands for Constrained Application Protocol.

The plugin listens for POST requests to the URI defined in the configuration. It expects the content of this PUT request to be a CBOR payload which it will expand and create assets for the items read from the CBOR payload.

To create a south service with the CoAP plugin

	Click on South in the left hand menu bar

	Select coap from the plugin list

	Name your service and click Next

	[image: coap_1]

	Configure the plugin

	Port: The port on which the CoAP plugin will listen

	URI: The URI the plugin expects to receive POST requests

	Click Next

	Enable the service and click on Done

Simple CSV Plugin

The fledge-south-csv plugin is a simple plugin for reading comma separated variable files and injecting them as if there were sensor data. There a are a number of variants of plugin that support this functionality with varying degrees of sophistication. These may also be considered as simple examples of how to write plugin code.

This particular CSV reader support single or multi-column CSV files, without timestamps in the file. It assumes every value is a data value. If the multi-column option is not set then it will read data from the file up until a newline or a comma character and make that as single data point in an asset and return that.

If the multi-column option is selected then each column in the CSV file becomes a data point within a single asset. It is assumed that every row of the CSV file will have the same number of values.

Upon reaching the end of the file the plugin will restart sending data from the beginning of the file.

To create a south service with the csv plugin

	Click on South in the left hand menu bar

	Select Csv from the plugin list

	Name your service and click Next

	[image: csv_1]

	Configure the plugin

	Asset Name: The name of the asset that will be created

	Datapoint: The name of the data point to insert. If multi-column is selected this becomes the prefix of the name, with the column number appended to create the full name

	Multi-Column: If selected then each row of the CSV file is treated as a single asset with each column becoming a data point within that asset.

	Path Of File: The file that should be read by the CSV plugin, this may be any location within the host operating system. The Fledge process should have permission to read this file.

	Click Next

	Enable the service and click on Done

CSV Playback

The plugin plays a csv file inside some given directory in file system (The default being FLEDGE_ROOT/data). It converts the columns of csv file into readings which are datapoints of an output asset.
The plugin plays readings at some configured rate.

We can also convert the columns of csv file into some other data type. For example from float to integer. The converted data will be part of reading not the CSV file.

The plugin has the ability to play the readings in either burst or continuous mode. In burst mode all readings are ingested into database at once and there is no adjustment of timestamp of a single reading. Whereas in continuous mode readings are ingested one by one and the timestamp of each reading is adjusted according to sampling rate. (For example if sampling rate is 8000 then the user_ts of every reading differs by 125 micro seconds.)

We can also copy the timestamp if present in the CSV file. This time stamp becomes the user_ts of a reading.

The plugin can also play the file in a loop which means it can start again if end of the file has reached.

The plugin can also play a file that has variable columns in every line.

[image: config1]

	
	‘assetName’: type: string default: ‘vibration’:
	The output asset that contains the readings.

	
	‘csvDirName’: type: string default: ‘FLEDGE_DATA’:
	The directory where CSV file exists. Default is FLEDGE_DATA or FLEDGE_ROOT/data

	
	‘csvFileName’: type: string default: ‘’:
	CSV file name or pattern to search inside directory. Not necessarily an exact file name.
If there are multiple files matching with the pattern, then the plugin will pick the first file in
alphabetical order. If postProcessMethod is rename or delete then it will rename or delete the played
file and pick the next one and so on.

	
	‘headerMethod’: type: enumeration default: ‘do_not_skip’:
	The method for processing the header of csv file.

	skip_rows : If this is selected then the plugin will skip a given number of rows. The number of rows should be given in noOfRows config parameter given below.

	pass_in_datapoint : If this is selected then the given number of rows will be combined into a string. This string will be present inside some given datapoint. Useful in cases where we want to ingest meta data along with readings from the csv file.

	do_not_skip: This option will not take any action on the header.

	
	‘dataPointForCombine’: type: string default: ‘metadata’:
	If header method is pass_in_datapoint then it is the datapoint name
where the given number of rows will get combined.

	
	‘noOfRows’: type: integer default: ‘1’:
	No. of rows to skip or combine to single value. Used when headerMethod is either skip_rows or pass_in_datapoint.

	
	‘variableCols’: type: boolean default: ‘false’:
	It should be set true, when the columns in every row
of CSV are not fixed. For example
If you have a file like this

a,b,c

2,3,,23

4

Then you should set it true.

Note

Only one reading will be ingested at a time in this case. If you want to increase the rate then increase
readingPerSec parameter in advanced plugin configuration.

	
	‘columnMethod’: type: enumeration default: ‘pick_from_file’:
	If variable Columns is false then it indicates how columns are considered.

	pick_from_file : The columns will be picked using a row index given.

	explicit : Specify the columns inside useColumns parameter.

	
	‘autoGeneratePrefix’: type: string default: ‘column’:
	If variable Columns is set true then data points will generated using the prefix.
For example if there is row like this 1,,2 and we chose autoGeneratePrefix to be column, then we will get data points like this column_1: 1, column_3: 2. Empty values will be ignored.

	
	‘useColumns’: type: string default: ‘’:
	Format column1:type,column2:type

The data types supported are:
int, float, str, datetime, bool

We can perform three tasks with this config parameter.

	The column name will get renamed in the reading if different name is used other than present in CSV file.

	We can select a subset of columns from total columns.

	We can convert the data type of each column.

Example if the file is like the following

id,value,status

1,2.5,’OK’

2,2.7,’OK’

Then we can give

	id:int,temperature:float,status:str

The column value will be renamed to temperature.

	id:int,value:float

Only two columns will be selected here.

	id:int,temperature:int,status:str

The data type will be converted to integer. Also column will be renamed.

[image: config2]

	
	‘rowIndexForColumnNames’: type: integer default: ‘0’:
	If column method is pick_from_file then it is the index
from where column names are taken.

	
	‘ingestMode’: type: enumeration default: ‘burst’:
	Burst or continuous mode for ingestion.

	
	‘sampleRate’: type: integer default: ‘8000’:
	No of readings per second to ingest.

	
	‘burstInterval’: type: integer default: ‘1000’:
	Used for burst mode. Time interval between consecutive bursts in milliseconds.

	
	‘timestampStyle’: type: enumeration default: ‘current time’:
	Controls how to give timestamps to reading. Works in four ways:

	current time: The timestamp in the readings is whatever the local time in the machine.

	copy csv value: Copy the timestamp present in the CSV file.

	move csv value: Used when we do not want to include timestamps from files in actual readings.

	use csv sample delta: Pick the delta between two readings in the file and construct the timestamp of reading using this delta. Assuming the delta remains constant through out the file.)

	
	‘timestampCol’: type: string default: ‘’:
	The timestamp column to pick from the file. Used only when timestampStyle is not ‘current time’.

	
	‘timestampFormat’: type: string default: ‘%Y-%m-%d %H:%M:%S.%f%z’:
	The timestamp format that will be used to parse the time stamps present in the file. Used only when timestampStyle is not ‘current time’.

	
	‘ignoreNaN’: type: enumeration default: ignore:
	Pandas takes the white spaces and missing values as NaN’s. These NaN’s cause problem while ingesting into database.
It is left to the user to ensure there are no missing values in CSV file. However if the option selected is report. Then plugin will check for NaN’s and report error to user. This can serve as a way to check the CSV file for missing values. However the user has to take action on what to do with NaN values. The default action is to ignore them.
When error is reported the user must delete the south service and try again with clean CSV file.

	
	‘postProcessMethod’: type: enumeration default: ‘continue_playing’:
	It is the method to process the CSV file once all rows are ingested.
It could be:

	continue_playing

Play the file again if finished.

	delete

Delete the played file once finished.

	rename

Rename the file with suffix after playing.

	
	‘suffixName’: type: string default: ‘.tmp’:
	The suffix name for renaming the file if postProcess method is rename.

Execution

Assuming you have a csv file named vibration.csv inside FLEDGE_ROOT/data/csv_data (Can give a pattern like vib. The plugin will search for all the files starting with vib and therefore find out the file named vibration.csv). The csv file has fixed number of columns per row. Also assuming the column names are present in the first line. The plugin will rename the file with suffix .tmp after playing. Here is the cURL command for that.

res=$(curl -sX POST http://localhost:8081/fledge/service -d @- << EOF | jq '.'
{
 "name":"csv_player",
 "type":"south",
 "plugin":"csvplayback",
 "enabled":false,
 "config": {
 "assetName":{"value":"My_csv_asset"},
 "csvDirName":{"value":"FLEDGE_DATA/csv_data"},
 "csvFileName":{"value":"vib"},
 "headerMethod":{"value":"do_not_skip"},
 "variableCols":{"value":"false"},
 "columnMethod":{"value":"pick_from_file"},
 "rowIndexForColumnNames":{"value":"0"},
 "ingestMode":{"value":"burst"},
 "sampleRate":{"value":"8000"},
 "postProcessMethod":{"value":"rename"},
 "suffixName":{"value":".tmp"}
 }
 }
 EOF
)

 echo $res

Poll Vs Async

The plugin also works in async mode. Though the default mode is poll.
The async mode is faster but suffers with memory growth when sample rate is too high for the machine configuration.

Use the following sed operation for async and start the plugin again. The second sed operation, in similar way, can be used if you want to revert back to poll mode. Restart for the plugin service is required.

plugin_path=$FLEDGE_ROOT/python/fledge/plugins/south/csvplayback/csvplayback.py
value='s/POLL_MODE=True/POLL_MODE=False/'
sudo sed -i $value $plugin_path

for reverting back to poll the commands will be
plugin_path=$FLEDGE_ROOT/python/fledge/plugins/south/csvplayback/csvplayback.py
value='s/POLL_MODE=False/POLL_MODE=True/'
sudo sed -i $value $plugin_path

Behaviour under various modes

Behaviour of CSV playback plugin

	Plugin mode

	Ingest mode

	Behaviour

	poll

	burst

	No memory growth. Resembles the way sensors give data in real life. However the timestamps of readings won’t differ by a fixed delta.

	poll

	continuous

	No memory growth. Readings differ by a constant delta. However it is slow in performance.

	async

	continuous

	Similar to poll continuous but faster. However memory growth is observed over time.

	async

	burst

	Similar to poll burst. Not used generally.

For using poll mode in continuous setting increase the readingPerSec category to the sample rate.

sampling_rate=8000
curl -sX PUT http://localhost:8081/fledge/category/csv_playerAdvanced -d '{"bufferThreshold":"'"$sampling_rate"'","readingsPerSec":"'"$sampling_rate"'"}' |jq

It is advisable to increase the buffer threshold to atleast half the sample rate for good performance. (As done in above command)

DHT11 (C version)

[image: ../../_images/dht111.jpg]
The fledge-south-dht plugin implements a temperature and humidity sensor using the DHT11 sensor module. Two versions of plugins for the DHT11 are available and are used as the example for plugin development. The other DHT11 plugin is fledge-south-dht11 and is a Python version.

The DHT11 and the associated DHT22 sensors may be used, however they have slightly different characteristics;

	
	DHT11

	DHT22

	Voltage

	3 to 5 Volts

	3 to 5 Volts

	Current

	2.5mA

	2.5mA

	Humidity Range

	0-50 % humidity 5% accuracy

	0-100% humidity 2.5% accuracy

	Temperature Range

	0-50 +/- 2 degrees C

	-40 to 80 +/- 0.5 degrees C

	Sampling Frequency

	1Hz

	0.5Hz

Note

Due to the requirement for attaching to GPIO pins this plugin is only available for the Raspberry Pi platform.

To create a south service with the DHT11 plugin

	Click on South in the left hand menu bar

	Select dht11_V2 from the plugin list

	Name your service and click Next

	[image: dht11_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	Rpi Pin: The GPIO pin on the Raspberry Pi to which the DHT11 serial pin is connected.

	Click Next

	Enable the service and click on Done

DHT11 (Python version)

[image: ../../_images/dht11.jpg]
The fledge-south-dht11 plugin implements a temperature and humidity sensor using the DHT11 sensor module. Two versions of plugins for the DHT11 are available and are used as the example for plugin development. The other DHT11 plugin is fledge-south-dht and is a C++ version.

The DHT11 and the associated DHT22 sensors may be used, however they have slightly different characteristics;

	
	DHT11

	DHT22

	Voltage

	3 to 5 Volts

	3 to 5 Volts

	Current

	2.5mA

	2.5mA

	Humidity Range

	0-50 % humidity 5% accuracy

	0-100% humidity 2.5% accuracy

	Temperature Range

	0-50 +/- 2 degrees C

	-40 to 80 +/- 0.5 degrees C

	Sampling Frequency

	1Hz

	0.5Hz

Note

Due to the requirement for attaching to GPIO pins this plugin is only available for the Raspberry Pi platform.

To create a south service with the DHT11 plugin

	Click on South in the left hand menu bar

	Select dht11 from the plugin list

	Name your service and click Next

	[image: dht11_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	GPIO Pin: The GPIO pin on the Raspberry Pi to which the DHT11 serial pin is connected.

	Click Next

	Enable the service and click on Done

DNP3 Master Plugin

The fledge-south-dnp3 allows Fledge to act as a DNP3 master and gather data from a DNP3 Out Station. The plugin will fetch all data types from the DNP3 Out Station and create assets for each in Fledge. The DNP3 plugin also handles unsolicited messages transmitted by the outstation.

	[image: dnp3]

	Asset Name prefix: An asset name prefix that is prepended to the DNP3 objects retrieved from the DNP3 outstations to create the Fledge asset name.

	Master link id: The master link id Fledge uses when implementing the DNP3 protocol.

	Outstation address: The IP address of the DNP3 Out Station to be connected.

	Outstation port: The post on the Out Station to which the connection is established.

	Outstation link Id: The Out Station link id.

	Data scan: Enable or disable the scanning of all objects and values in the Out Station. This is the Integrity Poll for all Classes.

	Scan interval: The interval between data scans of the Out Station.

	Network timeout: Timeout for fetching data from the Out Station expressed in seconds.

DNP3 Out Station Testing

The opdendnp3 package contains a demo Out Station that can be used for test purposes. After building the opendnp3 package on your machine run the demo program as follows;

$ cd opendnp3/build
$./outstation-demo

This demo application listens on any IP address, port 20001 and has link Id set to 10. It also assumes master link Id is 1. Configuring your Fledge plugin with these parameters should allow Fledge to connect to this Out Station.

Once started it logs traffic and waits for use input to send unsolicited messages:

Enter one or more measurement changes then press <enter>
c = counter, b = binary, d = doublebit, a = analog, o = octet string, 'quit' = exit

Another option is the use of a DNP3 Out Station simulator, as an example:

http://freyrscada.com/dnp3-ieee-1815-Client-Simulator.php#Download-DNP3-Development-Bundle

Once the bundle has been downloaded, the DNPOutstationSimulator.exe application under the “Simulator” folder can be installed and run on a Windows 32bit platform.

Expression South Plugin

The fledge-south-expression plugin is a plugin that is used to generate synthetic data using a mathematical expression to generate data that changes over time. The user may configure the plugin with an expression of their choice and define a period in terms of samples put period of the output and the increment between each sample.

	[image: expression_1]

The parameters that can be configured are;

	Asset Name: The name of the asset to be created inside Fledge.

	Expression: The expression that should be evaluated to create the asset value, see below.

	Minimum Value: The minimum value of x, where x is the value that sweeps over time.

	Maximum Value: The maximum value of x, where x is the value that sweeps over time.

	Step Value: The step in x for each call to the expression evaluation.

Expression Support

The fledge-south-expression plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

Flir AX8 Thermal Imaging Camera

[image: ../../_images/AX8.jpg]
The fledge-south-FlirAX8 plugin is a south plugin that enables temperature data to be collected from Flir Thermal Imaging Devices, in particular the AX8 and other A Series cameras. The camera provides a number of temperatures for both spots and boxes defined within the field of view of the camera. In addition it can also provide deltas between two temperature readings.

The bounding boxes and spots to read are configured by connecting to the web interface of the camera and dropping the spots on a thermal imaging or pulling out rectangles for the bounding boxes. The camera will return a minimum, maximum and average temperature within each bounding box.

	[image: flir_setup]

In order to configure a south service to obtain temperature data from a Flir camera select the South option from the left-hand menu bar and click on the Add icon in the top right corner of the South page that appears. Select the FlirAX8 plugin from the list of south plugins, name your service and click on Next.

The screen that appears is the configuration screen for the FlirAX8 plugin.

	[image: AX8_1]

There are four configuration parameters that can be set, usually it is only necessary to change the first two however;

	Asset Name: This is the asset name that the temperature data will be written to Fledge using. A single asset is used that will contain all of the values read from the camera.

	Server Address: This is the address of the Modbus server within the camera. This is the same IP address that is used to connect to the user interface of the camera.

	Port: The TCP port on which the cameras listens for Modbus requests. Unless changed in the camera the default port of 502 should be used.

	Slave ID: The Modbus Slave ID of the camera. By default the cameras are supplied with this set to 1, if changed within your camera setup you must also change the value here to match.

Once entered click on Next, enable the service on the next page and click on Done.

This will create a single asset that contains values for all boxes and spots that may be define. A filter fledge-filter-FlirValidity can be added to the south service to remove data for boxes and spots not switched on in the camera user interface. See Flir Validity. This filter also allows you to name the boxes and hence have more meaningful names in the data points within the asset.

South HTTP

The fledge-south-http plugin allows data to be received from another Fledge instance or external system using a REST interface. The Fledge which is sending the data to the corresponding north task with the HTTP north plugin installed. There are two options for the HTTP north C++ version or Python version, these serve the dual purpose of providing a data path between Fledge instances and also as examples of how other systems might use the REST interface from C/C++ or Python. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal Fledge format.

The primary purpose of this plugin is for Fledge to Fledge communication however, there is no reason to prevent other applications that wish to send data into a Fledge system to not use this plugin also. The only requirement is that the application that is sending the data uses the same JSON payload structure as Fledge uses for passing reading data between different instances. Data should be sent to the URL defined in the configuration of the plugin using a POST request. The caller may choose to send one or many readings within a single POST request and those readings may be for multiple assets.

To create a south service you, as with any other south plugin

	Select South from the left hand menu bar.

	Click on the + icon in the top left

	Choose http_south from the plugin selection list

	Name your service

	Click on Next

	Configure the plugin

	[image: http_1]

	Host: The host name or IP address to bind to. This may be left as default, in which case the plugin binds to any address. If you have a machine with multiple network interfaces you may use this parameter to select one of those interfaces to use.

	Port: The port to listen for connection from another Fledge instance.

	URL: URI that the plugin accepts data on. This should normally be left to the default.

	Asset Name Prefix: A prefix to add to the incoming asset names. This may be left blank if you wish to preserve the same asset names.

	Enable HTTP: This toggle specifies if HTTP connections should be accepted or not. If the toggle is off then only HTTPS connections can be used.

	Certificate Name: The name of the certificate to use for the HTTPS encryption. This should be the name of a certificate that is stored in the Fledge Certificate Store.

	Click Next

	Enable your service and click Done

JSON Payload

The payload that is expected by this plugin is a simple JSON presentation of a set of reading values. A JSON array is expected with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within Fledge.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

INA219 Voltage & Current Sensor

[image: ../../_images/ina219.jpg]
The fledge-south-ina219 plugin is a south plugin that uses an INA219 breakout board to measure current and voltage. The Texas Instruments INA219 is capable of measuring voltages up to 26 volts and currents up to 3.2 Amps. It connects via the I2C bus of the host and multiple sensors may be daisy chain on a single I2C bus. Breakout boards that mount the chip and its associate shunt resistor and connectors and easily available and attached to hosts with I2C buses.

The INA219 support three voltage/current ranges

	32 Volts, 2 Amps

	32 Volts, 1 Amp

	16 Volts, 400 mAmps

Choosing the smallest range that is sufficient for your application will give you the best accuracy.

Note

This plugin is only available for the Raspberry Pi as it requires to be interfaced to the I2C bus on the Raspberry Pi GPIO header socket.

To create a south service with the INA219

	Click on South in the left hand menu bar

	Select ina219 from the plugin list

	Name your service and click Next

	[image: ina219_1]

	Configure the plugin

	Asset Name: The asset name of the asst that will be written

	I2C Address: The address of the INA219 device

	Voltage Range: The voltage range that is to be used. This may be one of 32V2A, 32V1A or 16V400mA

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The INA219 uses the I2C bus on the Raspberry PI, which requires two wires to connect the bus, it also requires power taking the total to four wires

	INA219 Pin

	Raspberry Pi Pin

	Vin

	3V3 pin 1

	GND

	GND pin 9

	SDA

	SDA pin 3

	SCL

	SCL pin 5

Lathe Simulation

The fledge-south-lathesim plugin is a south plugin that simulates a lathe with a number of attached sensors. The purpose of this plugin is for test and demonstration only as it does not attach to any real device.

The plugin simulates four sensor devices attached to the virtual lathe

	The PLC controlling the lathe that gives details such as cutting depth, tool position, motor speed

	A current sensor that measures the current draw from the lathe

	A vibration sensor giving the RMS value of the vibration and the dominant vibration frequency

	A thermal imaging device that takes temperature readings every second from the motor, gearbox, headstock, tailstock and tool on the lathe

The vibration sensor reports at half the rate of the other sensors attached to the lathe in order to simulate handling data that is related to the same physical device but not available at the same rate as the other sensors.

The simulation runs a repeated pattern of operations;

	A spin-up period where the lathe spins up to speed from idle.

	A period where the lathe is doing some cutting of a work piece.

	A spin-down period where the lathe is slowing to a stop.

	An idle period where the work piece is removed and replace with a new billet.

During the spin up period the lathe speed, expressed is revolutions per minute, will linearly increase from 0 to the maximum defined.

When the lathe is cutting the speed will remain predominantly constant, with a small random variation, whilst the depth of cut and X position of the cutting tool will change.

The lathe then spins down to rest and will remain idle for a short time whilst the worked item is removed and a new billet of material is installed.

During the cutting period the current draw and vibration will alter as load is applied to the piece.

Configuring the PLC

The are a number of configuration options that can be applied to the simulation.

	[image: lathe]

	Lathe Name: The name of the lathe in this configuration. This name is used to derive the assets returned from the three sets of sensors. The PLC data is returned with an asset name that machines the lathe name. The current data has Current appended to the lathe name and the asset id of the vibration name is the lathe name with Vibration appended to it. The temperature data uses the asset with the name of the lathe and IR appended to it.

	Spin up time: The time in seconds it takes the lathe to spin up to working speed from idle.

	Cutting time: The time in seconds for which the lathe is cutting material.

	Spin Down time: The time in seconds for which the lathe is spining down from operating speed to stop.

	Idle time: The time in seconds for which the lathe is idle between jobs.

	RPM: The operating speed of the lathe, expressed in revolutions per minute.

	Current: The nominal operating current draw of the lathe.

Modbus South Plugin

The fledge-south-modbus-c plugin is a south plugin that supports both TCP and RTU variants of Modbus. The plugin provides support for reading Modbus coils, input bits, registers and input registers, a flexible mechanism is provided to create a mapping between the Modbus registers and coils and the assets within Fledge. Multiple registers can be combined to allow larger values that then register width to be mapped from devices that represent data in this way. Support is also included for floating point representation within the Modbus registers.

Configuration Parameters

A Modbus south service is added in the same way as any other south service in Fledge,

	Select the South menu item

	Click on the + icon in the top right

	Select ModbusC from the plugin list

	Enter a name for your Modbus service

	Click Next

	You will be presented with the following configuration page

	[image: modbus_1]

	Asset Name: This is the name of the asset that will be used for the data read by this service. You can override this within the Modbus Map, so this should be treated as the default if no override is given.

	Protocol: This allows you to select either the RTU or TCP protocol. Modbus RTU is used whenever you have a serial connection, such as RS485 for connecting to you device. The TCP variant is used where you have a network connection to your device.

	Server Address: This is the network address of your Modbus device and is only valid if you selected the TCP protocol.

	Port: This is the port to use to connect to your Modbus device if you are using the TCP protocol.

	Device: This is the device to open if you are using the RTU protocol. This would be the name of a Linux device in /dev, for example /dev/SERIAL0

	Baud Rate: The baud rate used to communicate if you are using a serial connection with Modbus RTU.

	Number of Data Bits: The number of data bits to send on serial connections.

	Number of Stop Bits: The number of stop bits to send on the serial connections.

	Parity: The parity setting to use on the serial connection.

	Slave ID: The slave ID of the Modbus device from which you wish to pull data.

	Register Map: The register map defines which Modbus registers and coils you read, and how to map them to Fledge assets. The map is a complex JSON object which is described in more detail below.

	Timeout: The request timeout when communicating with a Modbus TCP client. This can be used to increase the timeout when a slow Modbus device or network is used.

	Control: Which register map should be used for mapping control entities to modbus registers.

	[image: modbus_2]

If no control is required then this may be set to None. Setting this to Use Register Map will cause all the registers that are being rad to also be targets for control. Setting this to Use Control Map will case the separate Control Map to be used to map the control set points to modbus registers.

	Control Map: The register map that is used to map the set point names into Modbus registers for the purpose of set point control. The control map is the same JSON format document as the register map and uses the same set of properties.

Register Map

The register map is the most complex configuration parameter for this plugin and over time has supported a number of different variants. We will only document the latest of these here although previous variants are still supported. This latest variant is the most flexible to date and is thus the recommended approach to adopt.

The map is a JSON object with a single array values, each element of this array is a JSON object that defines a single item of data that will be stored in Fledge. These objects support a number of properties and values, these are

	Property

	Description

	name

	The name of the value that we are reading. This becomes the name of the
data point with the asset. This may be either the default asset name
defined plugin or an individual asset if an override is given.

	slave

	The Modbus slave ID of the device if it differs from the global Slave
ID defined for the plugin. If not given the default Slave ID will be
used.

	assetName

	This is an optional property that allows the asset name define for the
plugin to be overridden on an individual basis. Multiple values in the
values array may share the same AssetName, in which case the values
read from the Modbus device are placed in the same asset.

Note: This is unused in a control map.

	register

	This defines the Modbus register that is read. It may be a single
register, it which case the value is the register number or it may be
multiple registers in which case the value is a JSON array of numbers.
If an array is given then the registers are read in the order of that
array and combined into a single value by shifting each value up 16
bits and performing a logical OR operation with the next register in
the array.

	coil

	This defines the number of the Modbus coil to read. Coils are single
bit Modbus values.

	input

	This defines the number of the Modbus discrete input. Coils are single
bit Modbus values.

	inputRegister

	This defines the Modbus input register that is read. It may be a single
register, it which case the value is the register number or it may be
multiple registers in which case the value is a JSON array of numbers.
If an array is given then the registers are read in the order of that
array and combined into a single value by shifting each value up 16
bits and performing a logical OR operation with the next register in
the array.

	scale

	A scale factor to apply to the data that is read. The value read is
multiplied by this scale. This is an optional property.

	offset

	An optional offset to add to the value read from the Modbus device.

	type

	This allows data to be cast to a different type. The only support type
currently is float and is used to interpret data read from the one or
more of the 16 bit registers as a floating point value. This property
is optional.

	swap

	This is an optional property used to byte swap values read from a
Modbus device. It may be set to one of bytes, words or both to
control the swapping to apply to bytes in a 16 bit value, 16 bit words
in a 32 bit value or both bytes and words in 32 bit values.

Every value object in the values array must have one and only one of coil, input, register or inputRegister included as this defines the source of the data in your Modbus device. These are the Modbus object types and each has an address space within a typical Modbus device.

	Object Type

	Size

	Address Space

	Map Property

	Coil

	1 bit

	00001 - 09999

	coil

	Discrete Input

	1 bit

	10001 - 19999

	input

	Input Register

	16 bits

	30001 - 39999

	inputRegister

	Holding Register

	16 bits

	40001 - 49999

	register

The values in the map for coils, inputs and registers are relative to the base of the address space for that object type rather than the global address space and each is 0 based. A map value that has the property “coil” : 10 would return the values of the tenth coil and “register” : 10 would return the tenth register.

Example Maps

In this example we will assume we have a cooling fan that has a Modbus interface and we want to extract three data items of interest. These items are

	Current temperature that is in Modbus holding register 10

	Current speed of the fan that is stored as a 32 bit value in Modbus holding registers 11 and 12

	The active state of the fan that is stored in a Modbus coil 1

The Modbus Map for this example would be as follow:

{
 "values" : [
 {
 "name" : "temperature",
 "register" : 10
 },
 {
 "name" : "speed",
 "register" : [11, 12]
 },
 {
 "name" : "active",
 "coil" : 1
 }
]
}

Since none of these values have an assetName defined all there values will be stored in a single asset, the name of which is the default asset name defined for the plugin as a whole. This asset will have three data points within it; temperature, speed and active.

Function Codes

The fledge-south-modbus-c plugin attempts to make as few calls as possible to the underlying modbus device in order to collect the data. This is done in order to minimise the load that is placed on the modbus server. The modbus function codes used to read each coil or register type are as follows;

	Object Type

	Function Code

	Size

	Address Space

	Map Property

	Coil

	01 Read Coils

	1 bit

	00001 - 09999

	coil

	Discrete Input

	02 Read Discrete inputs

	1 bit

	10001 - 19999

	input

	Input Register

	04 Read register

	16 bits

	30001 - 39999

	inputRegister

	Holding Register

	16 Read multiple registers

	16 bits

	40001 - 49999

	register

Set Point Control

The fledge-south-modbus-c plugin supports the Fledge set point control mechanisms and allows a register map to be defined that maps the set point attributes to the underlying modbus registers. As an example a control map as follows

{
 "values" : [
 {
 "name" : "active",
 "coil" : 1
 }
]
}

Defines that a set point write operation can be instigated against the set point named active and this will map to the Modbus coil 1.

Set points may be defined for Modbus coils and registers, the rad only input bits and input registers can not be used for set point control.

The Control Map can use the same swapping, scaling and offset properties as modbus Register Map, it can also map multiple registers to a single set point and floating point values.

Error Messages

The following are messages that may be produced by the fledge-south-modbus-c plugin, these messages are written to the system log file and may be viewed by the System menu item in the Fledge user interface. This display may be filtered on the name of a particular south service in order to view just the messages that originate from that south service.

	The value of slave in the modbus map should be an integer
	When a modbus slave identifier is defined within the JSON modbus map it should always be given as a integer value and should not be enclosed in quotes

"slave" : 0

	The value of slave for item ‘X’ in the modbus map should be an integer
	A name entity in the modbus map is defined as a string and must be enclosed in double quotes. This error would indicate that a non-string value has been given.

"name" : "speed"

	Each item in the modbus map must have a name property
	Each of the modbus entities that is read must define a name property for the entity.

"name" : "speed"

	The value of assetName for item ‘X’ in the modbus map should be a string
	The optional property assetName must always be provided as a string in the modbus map.

"assetName" : "pumpSpeed"

	The value of scale for item ‘X’ in the modbus map should be a floating point number
	The optional property scale must always be expressed as a numeric value in the JSON of the modbus map, and should not be enclosed in quotes.

"scale" : 1.4

	The value of offset for item ‘X’ in the modbus map should be a floating point number
	The optional property offset must always be given as a numeric value in the JSON definition of the modbus item, and should not be enclosed in quotes.

"offset" : 2.0

	The value of coil for item ‘X’ in the modbus map should be a number
	The coil number given in the modbus map of an item must be an integer number, and should not be enclosed in quotes.

"coil" : 22

	The value of input for item ‘X’ in the modbus map must be either an integer
	The input number given in the modbus map of an item must be an integer number, and should not be enclosed in quotes.

"input" : 22

	The value of register for item ‘X’ in the modbus map must be either an integer or an array
	The register to read for an entity must be either an integer number or in the case of values constructed from multiple registers it may be an array of integer numbers. Numeric values should not be enclosed on quotes.

"register" : 22

Or, if two regsiters are being combined

"register" : [18, 19]

	The register array for item ‘X’ in the modbus map contain integer values
	When giving an array as the value of the register property for a modbus item, that array must only contain register numbers expressed as numeric values. Register numbers should not be enclosed in quotes.

"register" : [18, 19]

	The value of inputRegister for item ‘X’ in the modbus map must be either an integer or an array
	The input register to read for an entity must be either an integer number or in the case of values constructed from multiple input registers it may be an array of integer numbers. Numeric values should not be enclosed on quotes.

"inputRegister" : 22

Or, if two input registers are being combined

"inputRegister" : [18, 19]

	The type property of the item ‘X’ in the modbus map must be a string
	The optional type property for a modbus entity must be expressed as a string enclosed in double quotes.

"type" : "float"

	The type property ‘Y’ of the item ‘X’ in the modbus map is not supported
	The type property of the item is not supported by the plugin. Only the type float is currently supported.

	The swap property ‘Y’ of item ‘X’ in the modbus map must be one of bytes, words or both
	An unsupported option has been supplied as the value of the swap property, only bytes, words or both are supported values.

	The swap property of the item ‘X’ in the modbus map must be a string
	The optional swap property of a modbus item must be given as a string in double quotes and must be one of the supported swap options.

"swap" : "bytes"

	Item ‘X’ in the modbus map must have one of coil, input, register or inputRegister properties
	Each modbus item to be read from the modbus server must define how that item is addressed. This is done by adding a modbus property called coil, input, register or inputRegister.

	Item ‘X’ in the modbus map must only have one of coil, input, register or inputRegister properties
	Each modbus item to be read from the modbus server must define how that item is addressed. This is done by adding a modbus property called coil, input, register or inputRegister, these are mutually exclusive and only one of them may be given per item in the modbus map.

	N errors encountered in the modbus map
	A number of errors have been detected in the modbus map. These must be correct in order for the plugin to function correctly.

	Parse error in modbus map, the map must be a valid JSON object.
	The modbus map JSON document has failed to parse. An additional text will be given that describes the error that has caused the parsing of the map to fail.

	Parse error in control modbus map, the map must be a valid JSON object.
	The modbus control map JSON document has failed to parse. An additional text will be given that describes the error that has caused the parsing of the map to fail.

	Failed to connect to Modbus device
	The plugin has failed to connect to a modbus device. In the case of a TCP modbus connection this could be because the address or port have been misconfigured or the modbus device is not currently reachable on the network. In the case of a modbus RTU device this may be a misconfiguration or a permissions issue on the entry in /dev for the device. Additional information will be given in the error message to help identify the issue.

South MQTT

The fledge-south-mqtt-readings plugin allows to create an MQTT subscriber service. MQTT Subscriber reads messages from topics on the MQTT broker.

To create a south service you, as with any other south plugin

	Select South from the left hand menu bar

	Click on the + icon in the top right

	Choose mqtt-readings from the plugin selection list

	Name your service

	Click on Next

	Configure the plugin

	[image: mqtt-sub]

	MQTT Broker host: Hostname or IP address of the broker to connect to.

	MQTT Broker Port: The network port of the broker.

	Keep Alive Interval: Maximum period in seconds allowed between communications with the broker. If no other messages are being exchanged, this controls the rate at which the client will send ping messages to the broker.

	Topic To Subscribe: The subscription topic to subscribe to receive messages.

	QoS Level: The desired quality of service level for the subscription.

	Asset Name: Name of Asset.

	Click Next

	Enable your service and click Done

Message Payload

The content of the message payload published to the topic, to which the service is configured to subscribe,
should be parsable to a JSON object.

e.g. ‘{“humidity”: 93.29, “temp”: 16.82}’

$ mosquitto_pub -h localhost -t "Room1/conditions" -m '{"humidity": 93.29, "temp": 16.82}'

The mosquitto_pub client utility comes with the mosquitto package, and a great tool for conducting quick tests and troubleshooting.
https://mosquitto.org/man/mosquitto_pub-1.html

MQTT Sparkplug B

The fledge-south-mqtt-sparkplug plugin implements the Sparkplug B payload format with an MQTT (Message Queue Telemetry Transport) transport. The plugin will subscribe to a configured topic and will process the Sparkplug B payloads, creating Fledge assets form those payloads. Sparkplug is an open source software specification of a payload format and set of conventions for transporting sensor data using MQTT as the transport mechanism.

Note

Sparkplug is bi-directional, however this plugin will only read data from the Sparkplug device.

To create a south service with the MQTT Sparkplug B plugin

	Click on South in the left hand menu bar

	Select mqtt_sparkplug from the plugin list

	Name your service and click Next

	[image: sparkplug_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	MQTT Host: The MQTT host to connect to, this is the host that is running the MQTT broker.

	MQTT Port: The MQTT port, this is the port the MQTT broker uses for unencrypted traffic, usually 1883 unless modified.

	Username: The user name to be used when authenticating with the MQTT subsystem.

	Password: The password to use when authenticating with the MQTT subsystem.

	Topic: The MQTT topic to which the plugin will subscribe.

	Click Next

	Enable the service and click on Done

OPC/UA South Plugin

The fledge-south-opcua plugin allows Fledge to connect to an OPC/UA server and subscribe to changes in the objects within the OPC/UA server.

A south service to collect OPC/UA data is created in the same way as any other south service in Fledge.

	Use the South option in the left hand menu bar to display a list of your South services

	Click on the + add icon at the top right of the page

	Select the opcua plugin from the list of plugins you are provided with

	Enter a name for your south service

	Click on Next to configure the OPC/UA plugin

	[image: opcua_1]

The configuration parameters that can be set on this page are;

	Asset Name: This is a prefix that will be applied to all assets that are created by this plugin. The OPC/UA plugin creates a separate asset for each data item read from the OPC/UA server. This is done since the OPC/UA server will deliver changes to individual data items only. Combining these into a complex asset would result in assets that contain only one of many data points in each update. This can cause problems in upstream systems with the ever-changing asset structure.

	OPCUA Server URL: This is the URL of the OPC/UA server from which data will be extracted. The URL should be of the form opc.tcp://…./

	OPCUA Object Subscriptions: The subscriptions are a set of locations in the OPC/UA object hierarchy that defined which data is subscribed to in the server and hence what assets get created within Fledge. A fuller description of how to configure subscriptions is shown below.

	Subscribe By ID: This toggle determines if the OPC/UA objects in the subscription are using names to identify the objects in the OPC/UA object hierarchy or using object ID’s.

	Asset Name Source: This drop-down allows you to choose the source of the name for the Asset in Fledge. The choices are:

	NodeId: the Node Id of the OPC UA node. This is the default.

	BrowseName: the Browse Name of the OPC UA node.

	Subscription Path with NodeId: the path to the node in the OPC/UA server’s object hierarchy starting with the node specified in Subscriptions.
Every node in the hierarchy is named with its Node Id.
The Node Id is also used as the Data Point name.

	Subscription Path with BrowseName: same as Subscription Path with NodeId except that the Browse Name is used as the name of every node in the hierarchy.
The Browse Name is also used as the Data Point name.

	Full Path with NodeId: the path to the node in the OPC/UA server’s object hierarchy starting with the top-level Objects folder.
Every node in the hierarchy is named with its Node Id.
The Objects folder itself is not part of the full path.
The Node Id is also used as the Data Point name.

	Full Path with BrowseName: same as Full Path with NodeId except that the Browse Name is used as the name of every node in the hierarchy.
The Browse Name is also used as the Data Point name.

	Asset Path Delimiter: A character to separate segments of the Asset Path.
The delimiter is a single character.
If multiple characters are specified, the string will be truncated to one character.
The default is the forward slash (“/”).

	Min Reporting Interval: This controls the minimum interval between reports of data changes in subscriptions. It sets an upper limit to the rate that data will be ingested into the plugin and is expressed in milliseconds.

Subscriptions

Subscriptions to OPC/UA objects are stored as a JSON object that contains an array named “subscriptions”. This array is a set of OPC/UA nodes that will control the subscription to variables in the OPC/UA server.

The array may be empty, in which case all variables are subscribed to in the server and will create assets in Fledge. Note that simply subscribing to everything will return a lot of data that may not be of use.

If the Subscribe By ID option is set then this is an array of Node Id’s. Each Node Id should be of the form ns=..;s=… Where ns is a namespace index and s is the Node Id string identifier. A subscription will be created with the OPC/UA server for the object with the specified Node Id and its children, resulting in data change messages from the server for those objects. Each data change received from the server will create an asset in Fledge with the name of the object prepended by the value set for Asset Name. An integer identifier is also supported by using a Node Id of the form ns=…;i=….

If the Subscribe By ID option is not set then the array is an array of Browse Names. The format of the Browse Names is <namespace>:<name>. If the namespace is not required then the name can simply be given, in which case any name that matches in any namespace will have a subscription created. The plugin will traverse the node tree of the server from the ObjectNodes root and subscribe to all variables that live below the named nodes in the subscriptions array.

Configuration examples

{"subscriptions":["5:Simulation","2:MyLevel"]}

We subscribe to

	5:Simulation is a node name under ObjectsNode in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["5:Sinusoid1","2:MyLevel","5:Sawtooth1"]}

We subscribe to

	5:Sinusoid1 and 5:Sawtooth1 are variables under ObjectsNode/Simulation in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["2:Random.Double","2:Random.Boolean"]}

We subscribe to

	Random.Double and Random.Boolean are variables under ObjectsNode/Demo both in namespace 2

It’s also possible to specify an empty subscription array:

{"subscriptions":[]}

Note

Depending on OPC/UA server configuration (number of objects, number of variables) this empty configuration might take a long time to create the subscriptions and hence delay the startup of the south service. It will also result in a large number of assets being created within Fledge.

Object names, variable names and NamespaceIndexes can be easily retrieved browsing the given OPC/UA server using OPC UA clients, such as Ua Expert.

Person Detection Plugin

The fledge-south-person-detection detects a person on a live video feed from either a camera or on a network
stream. It uses Google’s Mobilenet SSD v2 to detect a person. The bounding boxes and confidence scores are displayed on the same video frame itself.
Also FPS (frames per second) are also displayed on the same frame. The detection results are also converted into readings. The readings have mainly three things:

	Count : The number of people detected.

	Coordinates : It consists of coordinates (x,y) of top-left and bottom right corners of bounding box for each detected person.

	Confidence : Confidence with which the model detected each person.

[image: config1]

	
	TFlite Model File:
	This is the name of the tflite model file that should be placed in
python/fledge/plugins/south/person_detection/model directory.
Its default value is detect_edgetpu.tflite.
If a Coral Edge TPU is not being used, the file name will be different (i.e. detect.tflite).

	
	Labels File:
	This is the name of the labels file that was used when training the above
model, this file should also be placed in same directory as the model.

	
	Asset Name:
	The name of the asset used for the readings generated by this plugin.

	
	Enable Edge TPU:
	Indicates whether to use edge TPU for inference.
If you don’t want to use Coral Edge TPU then disable this configuration parameter.
Also ensure to change the name of the model file to detect.tflite if disabled.
Default is set to enabled.

	
	Minimum Confidence Threshold:
	The detection results from the model will be filtered out, if the score is below this value.

	
	Source:
	Either use a stream over a network or use a local camera device.
Default is set to stream.

	
	Streaming URL:
	The URL of the RTSP stream, if stream is to be used. Only RTSP streams are supported for now.

	
	OpenCV Backend:
	The backend required by OpenCV to process the stream, if stream is to be used.
Default is set to ffmpeg.

	
	Streaming Protocol:
	The protocol over which live frames are being transported over the network, if stream is to be used.
Default is set to udp.

	
	Camera ID:
	The number associated with your video device. See /dev in your filesystem you will see video0 or video1.
It is required when source is set to camera.
Default is set to 0.

	
	Enable Detection Window:
	Show detection results in a native window.
Default is set to disabled.

[image: config2]

	
	Enable Web Streaming:
	Whether to stream the detected results in a browser or not.
Default is set to enabled.

	
	Web Streaming Port:
	Port number where web streaming server should run, if web streaming is enabled.
Default is set to 8085.

Installation

	First run requirements.sh

There are two ways to get the video feed.

	
	Camera
	
	To see the supported configuration of the camera run the following command.
	$ v4l2-ctl --list-formats-ext --device /dev/video0
You will see something like
'YUYV' (YUYV 4:2:2)
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 720x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1280x720
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1920x1080
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 2592x1944
 Interval: Discrete 0.067s (15.000 fps)
 Size: Discrete 0x0

Above example uses Camera ID 0 to indicate use of /dev/video0 device, please use the applicable value for your setup

	Network RTSP stream

To create a network stream follow the following steps

	Install vlc

$ sudo add-apt-repository ppa:videolan/master-daily
$ sudo apt update
$ apt show vlc
$ sudo apt install vlc qtwayland5
$ sudo apt install libavcodec-extra

	Download some sample files from here.

$ git clone https://github.com/intel-iot-devkit/sample-videos.git

	Either stream a file using the following

$ vlc <name_of_file>.mp4 --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=640,height=480,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_machine_steaming>:8554/clip}' --no-sout-all --sout-keep --loop --no-sout-audio --sout-x264-profile=baseline

Note : fill the <ip_of_the_machine> with ip of the machine which will be used to stream video. Also fill <name_of_file> with the name of mp4 file.

	You can also stream from a camera using the following

$ vlc v4l2:///dev/video<index_of_video_device> --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=<supported_width_of_camera_image>,height=<supported_height_of_camera_image>,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_the_machine>:8554/clip}' --no-sout-all --sout-keep --no-sout-audio --sout-x264-profile=baseline

Fill the following :

<index_of_video_device> The index with which you ran the v4l2 command mentioned above. for example video0.

<supported_height_of_camera_image> Height you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 480 is height.

<supported_width_of_camera_image> Width you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 640 is width.

<ip_of_the_machine> ip of the machine which will be used to stream video.

Once you have run the plugin by filling appropriate parameters Now go to your browser
and enter ip_where_fledge_is_running:the_port_for_web_streaming

Playback Plugin

The fledge-south-playback plugin is a feature rich plugin for playing back comma separated variable (CSV) files. It supports features such as;

	Header rows

	User defined column names

	Use of historic or current timestamps

	Multiple timestamp formats

	Pick and optionally rename columns

	Looped or single pass readings of the data

To create a south service with the playback plugin

	Click on South in the left hand menu bar

	Select playback from the plugin list

	Name your service and click Next

	[image: playback_01]

	Configure the plugin

	Asset Name: An asset name to use for the content of the file.

	CSV file name with extension: The name of the file that is to be processed, the file must be located in the fledge data directory.

	Header Row: Toggle to indicate the first row is a header row that contains the names that should be used for the data points within the asset.

	Header Columns: Only used if Header Row is not enabled. This parameter should a column separated list of column names that will be used to name the data points within the asset.

	Cherry pick column with same/new name: This is a JSON document that can define a set of columns to include and optionally names to give those columns. If left empty then all columns, are included.

	Historic timestamps: A toggle field to control if the timestamp data should be the current time or a date and time taken from the file itself.

	Pick timestamp delta from file: If current timestamps are used then this option can be used to maintain the same relative times between successive timestamps added to the data as it is ingested.

	Timestamp column name: The name of the column that should be used for reading timestamp value. This must be given if either historic timestamps are used or the interval between readings is to be maintained.

	Timestamp format: The format of the timestamp within the file.

	Ingest mode: Determine if ingest should be in batch or burst mode. In burst mode data is ingested as a set of bursts of rows, defined by Burst size, every Burst Interval, this allows simulation if sensors that have internal buffering within them. Batch mode is the normal, regular rate ingest of data.

	Sample Rate: The data sampling rate that should be used, this is defined in readings per second.

	Burst Interval (ms): The time interval between consecutive bursts when burst mode is used.

	Burst size: The number of readings to be sent in each burst.

	Read file in a loop: Once the end of the file is reached then the plugin will go back to the start and resend the data if this toggle is on.

	Click Next

	Enable the service and click on Done

Picking Columns

The Cherry pick column with same/new name entry is a JSON document with a set of key/value pairs. The key is the name of the column in the file and the value is the name which should appear in the final asset. To illustrate this let’s assume we have a CSV file as follows

X,Y,Z,Amps,Volts
1.3,0.1,0.3,2.1,240
1.2,0.3,0.2,2.2,235
....

We want to create an asset that has the X and Y values, Amps and Volts but we want to name them X, Y, Current, Voltage. We can do this by creating a JSON document that maps the columns.

{
 "X" : "X",
 "Y" : "Y",
 "Amps" : "Current",
 "Volts" : "Voltage"
}

Since we only mention the columns X, Y, Amps and Volts, only these will be included in the asset and we will not include the column Z. We map the column name X to X, so it will be unchanged. As will the column Y, the column Amps will become the data point Current and Volts will become Voltage.

PT100 Temperature Sensor

[image: ../../_images/pt100.jpg]
The fledge-south-pt100 is a south plugin for the PT-100 temperature sensor. The PT100 is a resistance temperature detectors (RTDs) consist of a fine wire (typically platinum) wrapped around a ceramic core, exhibiting a linear increase in resistance as temperature rises. The sensor connects via a MAX31865 converter to a GPIO pins for I2C bus and a chip select pin.

Note

This plugin is only available for the Raspberry Pi as it requires to be interfaced to the I2C bus on the Raspberry Pi GPIO header socket.

To create a south service with the PT100

	Click on South in the left hand menu bar

	Select pt100 from the plugin list

	Name your service and click Next

	[image: pt100_1]

	Configure the plugin

	Asset Name Prefix: A prefix to add to the asset name

	GPIO Pin: The GPIO pin on the Raspberry PI to which the MAX31865 chip select is connected.

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The MAX31865 uses the I2C bus on the Raspberry PI, which requires three wires to connect the bus, it also requires a chip select pin to be wired to a general GPIO pin and power.

	MAX 31865 Pin

	Raspberry Pi Pin

	Vin

	3V3

	GND

	GND

	SDI

	MOSI

	SDO

	MISO

	CLK

	SCLK

	CS

	GPIO (default GPIO8)

There are two options for connecting a PT100 to the MAX31865, a three wire PT100 or a four wire PT100.

[image: ../../_images/pt100_4wire.jpg]
To connect a four wire PT100 to the MAX 31865 the wires are connected in pairs, the two red wires are connected to the RTD- connector pair on the MAX31865 and the two remaining wires are connected to the RTD+ connector pair. If your PT100 does not have red wires or you wish to verify the colours are correct use a multimeter to measures the resistance across the pair of wires. Each pair should show 2 ohms between them and the difference between the two pairs should be 102 ohms, but will vary with temperature.

[image: ../../_images/pt100_4wire.jpg]
To connect a three wire sensor connect the red pair of wires across the RTD+ pair of connectors and the third wire on the RTD- block. If your PT100 doe not have a pair of red wires, or you wish to verify the colours and have access to a multimeter, the resistance between the red wires should be 2 ohms. ~The resistance to the third wire, from the red pair, will be approximately 102 ohms but will vary with temperature.

If using the 3 wire sensor you must also modify the jumpers on the MAX31865.

[image: ../../_images/max31865_3wire.jpg]
Create a solder bridge across the 2/3 Wire jumper, outlined in red in the picture above.

You must also cut the thin wire trace on the jumper block outlined in yellow that runs between the 2 and 4.

Then create a new connection between the 4 and 3 side of this jumper block. This is probably best done with a solder bridge.

 Random

Random

The fledge-south-random plugin is a plugin that will create random data.

To create a south service with the Random plugin

	Click on South in the left hand menu bar

	Select Random from the plugin list

	Name your service and click Next

	[image: random_1]

	Configure the plugin

	Asset name: The name of the asset that will be created

	Click Next

	Enable the service and click on Done

 Random Walk

Random Walk

The fledge-south-randomwalk plugin is a plugin that will create random data between a pair of values. Each new value is based on a random increment or decrement of the previous. This results in an output that appears as follows

	[image: random_2]

To create a south service with the Random Walk plugin

	Click on South in the left hand menu bar

	Select randomwalk from the plugin list

	Name your service and click Next

	[image: random_1]

	Configure the plugin

	Asset name: The name of the asset that will be created

	Minimum Value: The minimum value to include in the output

	Maximum Value: The maximum value to include in the output

	Click Next

	Enable the service and click on Done

 Enviro pHAT Plugin

Enviro pHAT Plugin

[image: ../../_images/envirophat_1.jpg]
The fledge-south-rpienviro is a plugin that uses the Pimoroni Enviro pHAT sensor board. The Enviro pHAT board is an environmental sensing board populated with multiple sensors, the plugin pulls data from the;

	RGB light sensor

	Magnetometer

	Accelerometer

	Temperature/pressure Sensor

Individual sensors can be enabled or disabled separately in the configuration. Separate assets are created for each sensor within Fledge with individual controls over the naming of these assets.

Note

The Enviro pHAT plugin is only available on the Raspberry Pi as it is specific the GPIO pins of that device.

To create a south service with the Enviro pHAT

	Click on South in the left hand menu bar

	Select rpienviro from the plugin list

	Name your service and click Next

	[image: envirophat_2]

	Configure the plugin

	Asset Name Prefix: An optional prefix to add to the asset names. The asset names created by the plugin are; rgb, magnetometer, accelerometer and weather. Using the prefix you can add an identifier to the front of each such that it becomes easier to differentiate between multiple instances of the sensor.

	RGB Sensor: A toggle control to turn on or off collection of RGB light level information

	RGB Sensor Name: Set a name for the RGB sensor asset

	Magnetometer Sensor: A toggle control to turn on or off collection of magnetometer data

	Magnetometer Sensor Name: Set a name for the magnetometer sensor asset

	Accelerometer Sensor: A toggle to turn on or off collection of accelorometer data

	Accelerometer Sensor Name: Set a name for the accelerometer sensor asset

	Weather Sensor: A toggle to turn on or off collection of weather data

	Weather Sensor Name: Set a name for the weather sensor asset

	Click Next

	Enable the service and click on Done

 OPC/UA Safe & Secure South Plugin

OPC/UA Safe & Secure South Plugin

The fledge-south-s2opcua plugin allows Fledge to connect to an OPC/UA server and subscribe to changes in the objects within the OPC/UA server. This plugin is very similar to the fledge-south-opcua plugin but is implemented using a different underlying OPC/UA open source library, S2OPC safe & secure from Systerel. The major difference between the two is the ability of this plugin to support secure endpoints with the OPC/UA server.

A south service to collect OPC/UA data is created in the same way as any other south service in Fledge.

	Use the South option in the left hand menu bar to display a list of your South services

	Click on the + add icon at the top right of the page

	Select the s2opcua plugin from the list of plugins you are provided with

	Enter a name for your south service

	Click on Next to configure the OPC/UA plugin

	[image: opcua_1]

The configuration parameters that can be set on this page are;

	Asset Name: This is a prefix that will be applied to all assets that are created by this plugin. The OPC/UA plugin creates a separate asset for each data item read from the OPC/UA server. This is done since the OPC/UA server will deliver changes to individual data items only. Combining these into a complex asset would result in assets that do only contain one of many data points in each update. This can cause upstream systems problems with the every changing asset structure.

	OPCUA Server URL: This is the URL of the OPC/UA server from which data will be extracted. The URL should be of the form opc.tcp://…./

	OPCUA Object Subscriptions: The subscriptions are a set of locations in the OPC/UA object hierarchy that defined which data is subscribed to in the server and hence what assets get created within Fledge. A fuller description of how to configure subscriptions is shown below.

	Min Reporting Interval: This control the minimum interval between reports of data changes in subscriptions. It sets an upper limit to the rate that data will be ingested into the plugin and is expressed in milliseconds.

	[image: opcua_2]

	Security Mode: Specify the OPC/UA security mode that will be used to communicate with the OPC/UA server.

	[image: opcua_3]

	Security Policy: Specify the OPC/UA security policy that will be used to communicate with the OPC/UA server.

	[image: opcua_4]

	User Authentication Policy: Specify the user authentication policy that will be used when authenticating the connection to the OPC/UA server.

	Username: Specify the username to use for authentication. This is only used if the User authentication policy is set to username.

	Password: Specify the password to use for authentication. This is only used if the User authentication policy is set to username.

	CA Certificate Authority: The name of the root certificate authorities certificate file in DER format. This is the certificate authority that forms the root of trust and signs the certificates that will be trusted. If using self-signed certificates this should be left blank.

	Server Public Certificate: The name of the public certificate of the OPC/UA server specified in the OPCUA Server URL. This must be a DER format certificate file. It must be signed by the certificate authority unless you are using self-signed certificates.

	Client Public Certificate: The name of the public certificate of the OPC/UA client application, that is, this plugin. This must be a DER format certificate file. It must be signed by the certificate authority unless you are using self-signed certificates.

	Client Private Key: The name of the private key of the client application, that is, the private key the plugin will use. This must be a PEM format key file.

	Certificate Revocation List: The name of the certificate authority’s Certificate Revocation List. This is a DER format certificate. If using self-signed certificates this should be left blank.

	Debug Trace File: Enable the S2OPCUA OPCUA Toolkit trace file for debugging. If enabled, log files will appear in the directory /usr/local/fledge/data/logs.

Subscriptions

Subscriptions to OPC/UA objects are stored as a JSON object that contents an array named “subscriptions.” This array is a set of OPC/UA nodes that will control the subscription to variables in the OPC/UA server. Each element in the array is an OPC/UA node id, if that node is is the id of a variable then that single variable will be added to the subscription list. If the node id is not a visible, then the plugin will recurse down the object tree below that node and add every variable in finds in this tree to the subscription list.

A subscription list which gives the root node of the OPC/UA server will cause all variables within the server to be added to the subscription list. Care however should be taken as this may be a large number of assets.

Subscription examples

{"subscriptions":["5:Simulation","2:MyLevel"]}

We subscribe to

	5:Simulation is a node name under ObjectsNode in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["5:Sinusoid1","2:MyLevel","5:Sawtooth1"]}

We subscribe to

	5:Sinusoid1 and 5:Sawtooth1 are variables under ObjectsNode/Simulation in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["2:Random.Double","2:Random.Boolean"]}

We subscribe to

	Random.Double and Random.Boolean are variables under ObjectsNode/Demo both in namespace 2

Object names, variable names and namespace indices can be easily retrieved browsing the given OPC/UA server using OPC UA clients, such as Ua Expert.

Certificate Management

OPC UA clients and servers use X509 certificates to confirm each other’s identities and to enable digital signing and data encryption.
Certificates are often issued by a Certificate Authority (CA) which means either the client or the server could reach out to the CA to confirm
the validity of the certificate if it choses to.

The configuration described above uses the names of certificates that will be used by the plugin.
These certificates must be loaded into the Fledge Certificate Store manually and named to match the names used in the configuration before the plugin is started.
When entering certificate and key file names, do not include directory names or file extensions (.der or .pem).

Typically the Certificate Authorities certificate is retrieved and uploaded to the Fledge Certificate Store along with the certificate from the OPC/UA server that has been signed by that Certificate Authority. A public/private key pair must also be created for the plugin and signed by the Certificate Authority. These are uploaded to the Fledge Certificate Store.

OpenSSL [https://www.openssl.org] may be used to generate and convert the keys and certificates required.
An generate_certs.sh example script to do this is available as part of the underlying S2OPC safe & secure library.

Certificate Requirements

Certificates must be X509 Version 3 certificates and must have the following field values:

	Certificate Field

	Value

	Version

	V3

	Subject

	This field must include a Common Name (CN=) which is a human-readable name such as S2OPCUA South Plugin. Do not use your device hostname.

	Subject Alternative Name

	URI= fledge:south:s2opcua, DNS= deviceHostname

	Key Usage

	Digital Signature, Key Encipherment, Non Repudiation, Data Encipherment

	Extended Key Usage

	Client Authentication

Self-Signed Certificates

A common configuration is to use self-signed certificates which are issued by your own systems and cannot be validated against a CA.
For this to work, the OPC UA client and server must each have a copy of the other’s certificate in their Trusted Certificate stores.
This task must be done by a system manager who is creating the device configuration.
By copying certificates, the system manager is confirming that the client and server can legitimately communicate with each other.

Creating a Self-Signed Certificate

There is a very useful online tool for creating self-signed certificates called CertificateTools [https://certificatetools.com].
You can watch a demonstration of CertificateTools on YouTube [https://www.youtube.com/watch?v=O9-Ld_ceL0E].
This section will walk you through the necessary steps to create a self-signed certificate for the S2OPCUA South plugin which is the OPC UA Client.

The CertificateTools [https://certificatetools.com] main page is divided into sections.
You can leave many of the sections at their default values.
Here are the required entries for each section:

Private Key

Leave the default values as-is: Generate PKCS#8 RSA Private Key and 2048 Bit. Leave Encrypt unchecked.

Subject Attributes

In Common Names, enter a human-readable name such as S2OPCUA South Plugin. Click Add.

Edit Country, State, Locality and Organization as you wish.
We recommend:

	Country: US

	State: CA

	Locality: Menlo Park

	Organization: Dianomic

Subject Alternative Name

Set the drop-down to DNS.
Enter the hostname of your Fledge device.
This can be an unqualified name, that is, the device hostname without domain name.
Click Add.

Set the drop-down to URI.
Enter fledge:south:s2opcua.
Click Add.

x509v3 Extensions

Key Usage

Click the check boxes to enable Critical, Digital Signature, Key Encipherment, Non Repudiation and Data Encipherment.

Extended Key Usage

Click the check boxes to enable Critical and TLS Web Client Authentication.

Encoding Options

Leave at Default.

CSR Options

Leave the first drop-down at SHA256.
Change the second drop-down from CSR Only to Self-Sign.
Doing this will expose drop-downs to set the self-signed certificate expiration time.

Generating the Certificate and Private Key

Click Submit.
This will create a new section marked by a blue bar labelled Certificate 0.

Open Certificate 0.
This will reveal a subsection called Download.
You will need only two of these files:

	PEM Certificate (filename cert.crt)

	PKCS#12 Certificate and Key (filename cert.pfx)

When you click the PKCS#12 Certificate and Key link, you will be prompted for a password for the private key.
It is acceptable to click Cancel to proceed without a password.
Download these two files to a working directory on any computer with OpenSSL installed (you will need OpenSSL to post-process the downloaded files).
You do not need to do this on your Fledge device.
You must do this on a machine that can run the Fledge GUI in a browser;
you will need the browser to import the certificate and key into the Fledge Certificate Store.

Note

The CertificateTools webpage can show you the equivalent OpenSSL commands to perform the self-signed certificate and key generation.
Look for OpenSSL Commands below the blue Certificate 0 bar.

Post-Processing the Certificate and Private Key

Use the OpenSSL command-line utility to convert the certificate and key files to the formats needed for the S2OPCUA South Plugin.

Converting the Certificate File

The PEM Certificate file (cert.crt) is in PEM format.
It must be converted to DER format.
The command is:

openssl x509 -inform pem -outform der -in cert.crt -out myclientcert.der

Converting the Private Key File

The PKCS#12 Certificate and Key file (cert.pfx) is in Public-Key Cryptography Standards PKCS#12 [https://en.wikipedia.org/wiki/PKCS_12] format.
It must be converted to PEM format.
The command is:

openssl pkcs12 -in cert.pfx -out myclientkey.pem -nodes

This command will prompt for the Import Password.
If you created a password when you downloaded the PKCS#12 Certificate and Key file, enter it now.
If you did not create a password, hit Enter.

Importing the Certificate and Key Files

Launch the Fledge GUI.
Navigate to the Certificate Store.
In the upper right corner of the screen, click Import.

	[image: certstore]

In the Key section, click Choose File and navigate to the location of the key file myclientkey.pem.

In the Certificate section, click Choose File and navigate to the location of the certificate file myclientcert.der.

Click Import.

You should use the Certificate Store in the Fledge GUI to import your OPC UA server certificate.
In this case, enter the server certificate file name in the Certificate portion of the Import dialog and then click Import.

 SenseHAT

SenseHAT

[image: ../../_images/sensehat.jpg]
The fledge-south-sensehat is a plugin that uses the Raspberry Pi Sense HAT sensor board. The Sense HAT has an 8×8 RGB LED matrix, a five-button joystick and includes the following sensors:

	Gyroscope

	Accelerometer

	Magnetometer

	Temperature

	Barometric pressure

	Humidity

In addition it has an 8x8 matrix for RGB LED’s, these are not included in the devices the plugin supports.

Individual sensors can be enabled or disabled separately in the configuration. Separate assets are created for each sensor within Fledge with individual controls over the naming of these assets.

Note

The Sense HAT plugin is only available on the Raspberry Pi as it is specific the GPIO pins of that device.

To create a south service with the Sense HAT

	Click on South in the left hand menu bar

	Select sensehat from the plugin list

	Name your service and click Next

	[image: sensehat_1]

	Configure the plugin

	Asset Name Prefix: An optional prefix to add to the asset names.

	Pressure Sensor: A toggle control to turn on or off collection of pressure information

	Pressure Sensor Name: Set a name for the Pressure sensor asset

	Temperature Sensor: A toggle control to turn on or off collection of temperature information

	Temperature Sensor Name: Set a name for the temperature sensor asset

	Humidity Sensor: A toggle control to turn on or off collection of humidity information

	Humidity Sensor Name: Set a name for the humidity sensor asset

	Gyroscope Sensor: A toggle control to turn on or off collection of gyroscope information

	Gyroscope Sensor Name: Set a name for the gyroscope sensor asset

	Accelerometer Sensor: A toggle to turn on or off collection of accelerometer data

	Accelerometer Sensor Name: Set a name for the accelerometer sensor asset

	Magnetometer Sensor: A toggle control to turn on or off collection of magnetometer data

	Magnetometer Sensor Name: Set a name for the magnetometer sensor asset

	Joystick Sensor: A toggle control to turn on or off collection of joystick data

	Joystick Sensor Name: Set a name for the joystick sensor asset

	Click Next

	Enable the service and click on Done

 Sinusoid

Sinusoid

The fledge-south-sinusoid plugin is a south plugin that is primarily designed for testing purposes. It produces as it’s output a simple sine wave, the period of which can be adjusted by changing the poll rate in the advanced settings of the south service into which it is loaded.

	[image: sinusoid_output]

There is very little configuration required for the sinusoid plugin, merely the name of the asset that should be written. This can be useful if you wish to have multiple sinusoid in your Fledge system.

	[image: sinusoid]

The frequency of the sinusoid can be adjusted by changing the poll rate of the sinusoid plugin. To do this select the South item from the left-hand menu bar and then click on the name of your sinusoid service. You will see a link labeled Show Advanced Config, click on this to reveal the advanced configuration.

	[image: sinusoid_advanced]

Amongst the advanced setting you will see one labeled Reading Rate. This defaults to 1 per second. The sinusoid takes 60 samples to complete one cycle of the sine wave, therefore it has a periodicity of 1 minute, or 0.0166Hz. If the Reading Rate is st to 60, then the frequency of the output becomes 1Hz.

 System Information

System Information

[image: ../../_images/systeminfo_2.jpg]
The fledge-south-systeminfo plugin implements a that collects data about the machine that the Fledge instance is running on. The plugin is designed to allow the monitoring of the edge devices themselves to be included in the monitoring of the equipment involved in processing environment.

The plugin will create a number of assets, in general there are one or more assets per device connected in the case of disks and network interfaces. There are also some generic assets to measure;

	CPU Usage

	Host name

	Load Average

	Memory Usage

	Paging and swapping

	Process information

	System Uptime

A typical output for one of these assets, in this case the processes asset is shown below

	[image: systeminfo_3]

To create a south service with the systeminfo plugin

	Click on South in the left hand menu bar

	Select systeminfo from the plugin list

	Name your service and click Next

	[image: systeminfo_1]

	Configure the plugin

	Asset Name Prefix: The asset name prefix for the assets created by this plugin. The plugin will create a number of assets, the exact number is dependent on the number of devices attached to the machine.

	Click Next

	Enable the service and click on Done

 Advantech USB-4704

Advantech USB-4704

[image: ../../_images/usb_1.jpg]
The fledge-south-usb4704 plugin is a south plugin that is designed to gather data from an Advantech USB-4704 data acquisition module. The module supports 8 digital inputs and 8 analogue inputs. It is possible to configure the plugin to combine multiple digital input to create a single numeric data point or have each input as a boolean data point. Each analogue input, which is a 14 bit analogue to digital converter, becomes a single numeric data point in the range 0 to 16383, although a scale and offset may be applied to these values.

To create a south service with the USB-4704

	Click on South in the left hand menu bar

	Select usb4704 from the plugin list

	Name your service and click Next

	[image: usb_2]

	Configure the plugin

	Asset Name: The name of the asset that will be created with the values read from the USB-4704

	Connections: A JSON document that describes the connections to the USB-4704 and the data points within the asset that they map to. The JSON document is a set of objects, one per data point. The objects contain a number of key/value pairs as follow

	Key

	Description

	type

	The type of connection, this may be either digital or analogue.

	pin

	The analogue pin used for the connection.

	pins

	An array of pins for a digital connection, the first element in the
array becomes the most significant bit of the numeric value created.

	name

	The data point name within the asset.

	scale

	An optional scale value that may be applied to the value.

	Click on Next

	Enable your service and click on Done

 Fledge North Plugins

Fledge North Plugins

	OMF
	PI Web API OMF Endpoint

	Edge Data Store OMF Endpoint

	OSIsoft Cloud Services OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Azure IoT Hub
	JSON Payload

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	HarperDB

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	Payload Script

	Kafka Producer

	ThingSpeak

 OMF

OMF

The OMF north plugin is included in all distributions of the Fledge core and provides the north bound interface to the OSIsoft data historians in all it forms; PI Server, Edge Data Store and OSIsoft Cloud Services.

PI Web API OMF Endpoint

To use the PI Web API OMF endpoint first ensure the OMF option was included in your PI Server when it was installed.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_pi_web_config]

Select PI Web API from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose PI Web API.

	Send full structure: Used to control if Asset Framework structure messages are sent to the PI Server. If this is turned off then the data will not be placed in the Asset Framework.

	Naming scheme: Defines the naming scheme to be used when creating the PI points in the PI Data Archive. See Naming Scheme.

	Server hostname: The hostname or address of the PI Web API server. This is normally the same address as the PI Server.

	Server port: The port the PI Web API OMF endpoint is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Asset Framework
	
	Default Asset Framework Location: The location in the Asset Framework hierarchy into which the data will be inserted.
All data will be inserted at this point in the Asset Framework hierarchy unless a later rule overrides this.
Note this field does not include the name of the target Asset Framework Database;
the target database is defined on the PI Web API server by the PI Web API Admin Utility.

	Asset Framework Hierarchies Rules: A set of rules that allow specific readings to be placed elsewhere in the Asset Framework. These rules can be based on the name of the asset itself or some metadata associated with the asset. See Asset Framework Hierarchy Rules.

	
	PI Web API authentication
	
	PI Web API Authentication Method: The authentication method to be used: anonymous, basic or kerberos.
Anonymous equates to no authentication, basic authentication requires a user name and password, and Kerberos allows integration with your single signon environment.

	PI Web API User Id: For Basic authentication, the user name to authenticate with the PI Web API.

	PI Web API Password: For Basic authentication, the password of the user we are using to authenticate.

	PI Web API Kerberos keytab file: The Kerberos keytab file used to authenticate.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI Server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to the PI Web API OMF endpoint.
This setting is not related to data compression in the PI Data Archive.

Edge Data Store OMF Endpoint

To use the OSIsoft Edge Data Store first install Edge Data Store on the same machine as your Fledge instance. It is a limitation of Edge Data Store that it must reside on the same host as any system that connects to it with OMF.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_eds_config]

Select Edge Data Store from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose Edge Data Store.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: Normally the hostname or address of the OMF endpoint. For Edge Data Store, this must be localhost.

	Server port: The port the Edge Data Store is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the Edge Data Store. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to the Edge Data Store.

OSIsoft Cloud Services OMF Endpoint

Go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_ocs_config]

Select OSIsoft Cloud Services from the Endpoint options.

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose OSIsoft Cloud Services.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Data Source: Defines which data is sent to OSIsoft Cloud Services. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to OSIsoft Cloud Services. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Authentication
	
	OCS Namespace: Your namespace within OSIsoft Cloud Services.

	OCS Tenant ID: Your OSIsoft Cloud Services Tenant ID for your account.

	OCS Client ID: Your OSIsoft Cloud Services Client ID for your account.

	OCS Client Secret: Your OSIsoft Cloud Services Client Secret.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending them to OSIsoft Cloud Services.

PI Connector Relay

The PI Connector Relay has been discontinued by OSIsoft.
All new deployments should use the PI Web API endpoint.
Existing installations will still be supported.
The PI Connector Relay was the original mechanism by which OMF data could be ingesting into a PI Server.
To use the PI Connector Relay, open and sign into the PI Relay Data Connection Manager.

	[image: PI_connectors]

To add a new connector for the Fledge system, click on the drop down menu to the right of “Connectors” and select “Add an OMF application”. Add and save the requested configuration information.

	[image: PI_connect]

Connect the new application to the PI Connector Relay by selecting the new Fledge application, clicking the check box for the PI Connector Relay and then clicking “Save Configuration”.

	[image: PI_token]

Finally, select the new Fledge application. Click “More” at the bottom of the Configuration panel. Make note of the Producer Token and Relay Ingress URL.

Now go to the Fledge user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_connector_relay_config]

	
	Basic Information
	
	Endpoint: This is the type of OMF endpoint. In this case, choose Connector Relay.

	Server hostname: The hostname or address of the PI Connector Relay.

	Server port: The port the PI Connector Relay is listening on. Leave as 0 if you are using the default port.

	Producer Token: The Producer Token provided by the PI Relay Data Connection Manager.

	Data Source: Defines which data is sent to the PI Connector Relay. Choices are: readings or statistics (that is, Fledge’s internal statistics).

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the Fledge server.

	
	Connection management (These should only be changed with guidance from support)
	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (Fledge doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before Fledge will time out an HTTP connection attempt.

	
	Other (Rarely changed)
	
	Integer Format: Used to match Fledge data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match Fledge data types to the data type configured in PI. The default is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

Naming Scheme

The naming of objects in the Asset Framework and of the attributes of
those objects has a number of constraints that need to be understood when
storing data into a PI Server using OMF.
An important factor in this is the stability of your data structures.
If you have objects in your environment that are likely to change,
you may wish to take a different naming approach.
Examples of changes are a difference in the number of attributes between readings, and a change in the data types of attributes.

This occurs because of a limitation of the OMF interface to the PI Server.
Data is sent to OMF in a number of stages.
One of these is the definition of the Types used to create AF Element Templates.
OMF uses a Type to define an AF Element Template but once defined it cannot be changed.
If an updated Type definition is sent to OMF, it will be used to create a new AF Element Template rather than changing the existing one.
This means a new AF Element Template is created each time a Type changes.

The OMF plugin names objects in the Asset Framework based upon the asset
name in the reading within Fledge. Asset names are typically added to
the readings in the south plugins, however they may be altered by filters
between the south ingest and the north egress points in the data
pipeline. Asset names can be overridden using the OMF Hints mechanism
described below.

The attribute names used within the objects in the PI System are based
on the names of the datapoints within each Reading within Fledge. Again
OMF Hints can be used to override this mechanism.

The naming used within the objects in the Asset Framework is controlled
by the Naming Scheme option:

	Concise
	No suffix or prefix is added to the asset name and property name when
creating objects in the Asset Framework and PI Points in the PI Data Archive.
However, if the structure of an asset changes a new AF Element Template
will be created which will have the suffix -type*x* appended to it.

	Use Type Suffix
	The AF Element names will be created from the asset names by appending
the suffix -type*x* to the asset name. If the structure
of an asset changes a new AF Element name will be created with an
updated suffix.

	Use Attribute Hash
	AF Attribute names will be created using a numerical hash as a prefix.

	Backward Compatibility
	The naming reverts to the rules that were used by version 1.9.1 and
earlier of Fledge: both type suffixes and attribute hashes will be
applied to the name.

Asset Framework Hierarchy Rules

The Asset Framework rules allow the location of specific assets within
the Asset Framework to be controlled. There are two basic types of hint:

	Asset name placement: the name of the asset determines where in the
Asset Framework the asset is placed,

	Meta data placement: metadata within the reading determines where
the asset is placed in the Asset Framework.

The rules are encoded within a JSON document.
This document contains two properties in the root of the document:
one for name-based rules and the other for metadata based rules.

{
 "names" :
 {
 "asset1" : "/Building1/EastWing/GroundFloor/Room4",
 "asset2" : "Room14"
 },
 "metadata" :
 {
 "exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 },
 "nonexist" :
 {
 "unit" : "Uncalibrated"
 }
 "equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }
 "notequal" :
 {
 "building" :
 {
 "plant" : "/Office/Environment"
 }
 }
 }
}

The name type rules are simply a set of asset name and Asset Framework location
pairs. The asset names must be complete names; there is no pattern
matching within the names.

The metadata rules are more complex. Four different tests can be applied:

	exists: This test looks for the existence of the named datapoint within the asset.

	nonexist: This test looks for the lack of a named datapoint within the asset.

	equal: This test looks for a named datapoint having a given value.

	notequal: This test looks for a name datapoint having a value different from that specified.

The exist and nonexist tests take a set of name/value pairs that
are tested. The name is the datapoint name to examine and the value is
the Asset Framework location to use. For example

"exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 }

If an asset has a datapoint called temperature in will be stored in
the AF hierarchy temperatures, if the asset had a datapoint called
power the asset will be placed in the AF hierarchy /Electrical/Power.

The equal and notequal tests take an object as a child, the name of
the object is datapoint to examine, the child nodes a sets of values
and locations. For example

"equal" :
 {
 "room" :
 {
 "4" : "ElectricalLab",
 "6" : "FluidLab"
 }
 }

In this case if the asset has a datapoint called room with a value
of 4 then the asset will be placed in the AF location ElectricalLab,
if it has a value of 6 then it is placed in the AF location FluidLab.

If an asset matches multiple rules in the ruleset it will appear in
multiple locations in the hierarchy, the data is shared between each of
the locations.

If an OMF Hint exists within a particular reading this will take
precedence over generic rules.

The AF location may be a simple string or it may also include
substitutions from other datapoints within the reading. For example
of the reading has a datapoint called room that contains the room
in which the readings was taken, an AF location of /BuildingA/${room}
would put the reading in the Asset Framework using the value of the room
datapoint. The reading

"reading" : {
 "temperature" : 23.4,
 "room" : "B114"
 }

would be put in the AF at /BuildingA/B114 whereas a reading of the form

"reading" : {
 "temperature" : 24.6,
 "room" : "2016"
 }

would be put at the location /BuildingA/2016.

It is also possible to define defaults if the referenced datapoint
is missing. In our example above if we used the location
/BuildingA/${room:unknown} a reading without a room datapoint would
be placed in /BuildingA/unknown. If no default is given and the data
point is missing then the level in the hierarchy is ignore. E.g. if we
use our original location /BuildingA/${room} and we have the reading

"reading" : {
 "temperature" : 22.8,
 }

this reading would be stored in /BuildingA.

OMF Hints

The OMF plugin also supports the concept of hints in the actual data
that determine how the data should be treated by the plugin. Hints are
encoded in a specially name datapoint within the asset, OMFHint. The
hints themselves are encoded as JSON within a string.

Number Format Hints

A number format hint tells the plugin what number format to use when inserting data
into the PI Server. The following will cause all numeric data within
the asset to be written using the format float32.

"OMFHint" : { "number" : "float32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Integer Format Hints

An integer format hint tells the plugin what integer format to use when inserting
data into the PI Server. The following will cause all integer data
within the asset to be written using the format integer32.

"OMFHint" : { "number" : "integer32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Type Name Hints

A type name hint specifies that a particular name should be used when
defining the name of the type that will be created to store the object
in the Asset Framework. This will override the Naming Scheme currently
configured.

"OMFHint" : { "typeName" : "substation" }

Type Hint

A type hint is similar to a type name hint, but instead of defining
the name of a type to create it defines the name of an existing type
to use. The structure of the asset must match the structure of the
existing type with the PI Server, it is the responsibility of the person
that adds this hint to ensure this is the case.

"OMFHint" : { "type" : "pump" }

Tag Name Hint

Specifies that a specific tag name should be used when storing data in the PI Server.

"OMFHint" : { "tagName" : "AC1246" }

Datapoint Specific Hint

Hints may also be targeted to specific data points within an asset by
using the datapoint hint. A datapoint hint takes a JSON object as
its value; the object defines the name of the datapoint and the hint
to apply.

"OMFHint" : { "datapoint" : { "name" : "voltage:, "number" : "float32" } }

The above hint applies to the datapoint voltage in the asset and
applies a number format hint to that datapoint.

Asset Framework Location Hint

An Asset Framework location hint can be added to a reading to control
the placement of the asset within the Asset Framework. An Asset Framework
hint would be as follows:

"OMFHint" : { "AFLocation" : "/UK/London/TowerHill/Floor4" }

Note the following when defining an AFLocation hint:

	An asset in a Fledge Reading is used to create a Container in the OSIsoft Asset Framework [https://docs.osisoft.com/bundle/omf-with-pi-web-api/page/container-messages.html].
A Container is an AF Element with one or more AF Attributes that are mapped to PI Points using the OSIsoft PI Point Data Reference.
The name of the AF Element comes from the Fledge Reading asset name.
The names of the AF Attributes come from the Fledge Reading datapoint names.

	If you edit the AF Location hint, the Container will be moved to the new location in the AF hierarchy.

	If you disable the OMF Hint filter, the Container will not move.

	If you wish to move a Container, you can do this with the PI System Explorer.
Right-click on the AF Element that represents the Container.
Choose Copy.
Select the AF Element that will serve as the new parent of the Container.
Right-click and choose Paste.
You can then return to the original Container and delete it.
Note that PI System Explorer does not have the traditional Cut function for AF Elements.

	If you move a Container, OMF North will not recreate it.
If you then edit the AF Location hint, the Container will appear in the new location.

Adding OMF Hints

An OMF Hint is implemented as a string data point on a reading with
the data point name of OMFHint. It can be added at any point in the
processing of the data, however a specific plugin is available for adding
the hints, the OMFHint filter plugin.

 Azure IoT Hub

Azure IoT Hub

The fledge-north-azure plugin sends data from Fledge to the Microsoft Azure IoT Core service.

The configuration of the Azure plugin requires a few simple configuration parameters to be set.

	[image: azure]

	Primary Connection String: The primary connection string to connect to your Azure IoT project. The connection string should contain

	The hostname to connect to

	The DeviceID of the device you are using

	The shared access key generated on your Azure login

	MQTT over websockets: Enable if you wish to run MQTT over websockets.

	Data Source: Which Fledge data to send to Azure; Readings or Fledge Statistics.

	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with Fledge filters and exists for backward compatibility reason only.

	Filter Rule: A jq filter rule to apply. Since the introduction of Fledge filters in the north task this has become deprecated and should not be used.

JSON Payload

The payload that is sent by this plugin to Azure is a simple JSON representation of a set of reading values. A JSON array is sent with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within Fledge.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

 Google Cloud Platform North Plugin

Google Cloud Platform North Plugin

The fledge-north-gcp plugin provide connectivity from a Fledge system to the Google Cloud Platform. The plugin connects to the IoT Core in Google Cloud using MQTT and is fully compliant with the security features of the Google Cloud Platform. See Using Fledge with IoT Core on Google Cloud for a tutorial on setting up a Fledge system and getting it to send data to Google Cloud.

Prerequisites

A number of things must be done in the Google Cloud before you can create your north connection to GCP. You must

	Create a GCP IoT Core project

	Download the roots.pem certificate from your GCP account

	Create a registry

	Create a device ID and configure a key pair for that device

	Upload the certificates to the Fledge certificate store

Create GCP IoT Core Project

To create a new project

	Goto the IoT Core page in the Cloud Console

	Select the Projects page and select the Create New Project option

	[image: gcp_02]

	Enter your project details

	[image: gcp_03]

Download roots.pem

To download the roots.pem security certificate

	From the command line shell of your machine run the command

$ wget https://pki.goog/roots.pem

Create a Registry

To create a registry in your project

	Goto the IoT Core page in the Cloud Console

	Click on the menu icon in the top left corner of the page [image: gcp_menu]

	Select the Create Registry option

	[image: gcp_registry]

	A new screen is shown that allows you to create a new registry

	[image: gcp_add_registry]

	Note the Registry ID and region as you will need these later

	Select an existing telemetry topic or create a new topic (for example, projects/[YOUR_PROJECT_ID]/topics/[REGISTRY_ID])

	Click on Create

Create a Device ID

To create a device in your Google Cloud Project

	Create an RSA public/private key pair on your local machine

openssl genpkey -algorithm RSA -out rsa_fledge.pem -pkeyopt rsa_keygen_bits:2048
openssl rsa -in rsa_fledge.pem -pubout -out rsa_fledge.pem

	Goto the IoT Core page in the Cloud Console

	In the left pane of the IoT Core page in the Cloud Console, click Devices

	[image: gcp_devices]

	At the top of the Devices page, click Create a device

	[image: gcp_create_device]

	Enter a device ID, you will need to add this in the north plugin configuration later

	Click on the ADD ATTRIBUTE COMMUNICATION, STACKDRIVER LOGGING, AUTHENTICATION link to open the remainder of the inputs

	Make sure the public key format matches the type of key that you created in the first step of this section (for example, RS256)

	Paste the contents of your public key in the Public key value field.

Upload Your Certificates

You should upload your certificates to Fledge

	From the Fledge user interface select the Certificate Store from the left-hand menu bar

	[image: certs]

	Click on the Import option in the top left corner

	[image: import]

	In the Certificate option select the Choose file option and select your roots.pem and click on open

	Repeat the above for your device key and certificate

Create Your North Task

Having completed the pre-requisite steps it is now possible to create the north task to send data to GCP.

	Select the North option from the left-hand menu bar.

	Select GCP from the North Plugin list

	Name your North task and click on Next

	[image: gcp_01]

	Configure your GCP plugin

	Project ID: Enter the project ID you created in GCP

	The GCP Region: Select the region in which you created your registry

	Registry ID: The Registry ID you created should be entered here

	Device ID: The Device ID you created should be entered here

	Key Name: Enter the name of the device key you uploaded to the certificate store

	JWT Algorithm: Select the algorithm that matches the key you created earlier

	Data Source: Select the data to send to GCP, this may be readings or Fledge statistics

	Click on Next

	Enable your plugin and click on Done

 HarperDB

HarperDB

The fledge-north-harperdb plugin sends data from Fledge to the HarperDB database. HarperDB is a geo-distributed database with hybrid SQL & NoSQL functionality in one powerful tool, accessed via a REST API. Each asset that is read by Fledge is written to a separate table within the specified HarperDB schema. The plugin will support both local installations and cloud installations of HarperDB.

The configuration of the HarperDB plugin requires a few simple configuration parameters to be set.

	[image: harper]

	URL: The URL of the HarperDB database that will be used to store the data sent from Fledge. This may be either an HTTP or HTTPS URL

	Username: The username to use when authenticating with the HarperDB database.

	Password: The password of the user that will be used to store the data in HarperDB.

	Schema: The name of the schema in the HarperDB database in which the tables will be stored.

	Source: The source of the Fledge data to store in the HarperDB database; Readings or Fledge Statistics.

 North HTTP

North HTTP

The fledge-north-http plugin allows data to be sent from the north of one Fledge instance into the south of another Fledge instance. It allows hierarchies of Fledge instances to be built. The Fledge to which the data is sent must run the corresponding South service in order for data to flow between the two Fledge instances. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal Fledge format.

The plugin may also be used to send data from Fledge to another system, the receiving system should implement a REST end point that will accept a POST request containing JSON data. The format of the JSON payload is described below. The required REST endpoint path is defined in the configuration of the plugin.

Filters may be applied to the connection in either the north task that loads this plugin or the receiving south service on the up stream Fledge.

A C++ version of this plugin exists also that performs the same function as this plugin, the pair are provided for purposes of comparison and the user may choose whichever they prefer to use.

To create a north task to send to another Fledge you should first create the South service that will receive the data. Then create a new north tasks by;

	Selecting North from the left hand menu bar.

	Click on the + icon in the top left

	Choose http_north from the plugin selection list

	Name your task

	Click on Next

	Configure the plugin

	[image: http_1]

	URL: The URL of the receiving South service, the address and port should match the service in the up stream Fledge. The URL can specify either HTTP or HTTPS protocols.

	Source: The data to send, this may be either the reading data or the statistics data

	Verify SSL: When HTTPS rather the HTTP is used this toggle allows for the verification of the certificate that is used. If a self signed certificate is used then this should not be enabled.

	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with Fledge filters and exists for backward compatibility reason only.

	Filter Rule: A jq filter rule to apply. Since the introduction of Fledge filters in the north task this has become deprecated and should not be used.

	Click Next

	Enable your task and click Done

JSON Payload

The payload that is sent by this plugin is a simple JSON presentation of a set of reading values. A JSON array is sent with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within Fledge.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

 North HTTP-C

North HTTP-C

The fledge-north-http-c plugin allows data to be sent from the north of one Fledge instance into the south of another Fledge instance. It allows hierarchies of Fledge instances to be built. The Fledge to which the data is sent must run the corresponding South service in order for data to flow between the two Fledge instances. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal Fledge format.

Additionally this plugin allows for two URL’s to be configured, a primary URL and a secondary URL. If the connection to the primary URL fails then the plugin will switch over to using the secondary URL. It will switch back if the connection to the secondary fails or if when the north task completes and a new north task is later run.

The plugin may also be used to send data from Fledge to another system, the receiving system should implement a REST end point that will accept a POST request containing JSON data. The format of the JSON payload is described below. The required REST endpoint path is defined in the configuration of the plugin.

Filters may be applied to the connection in either the north task that loads this plugin or the receiving south service on the up stream Fledge.

A Python version plugin exists also that performs the same function as this plugin, the pair are provided for purposes of comparison and the user may choose whichever they prefer to use.

To create a north task to send to another Fledge you should first create the South service that will receive the data. Then create a new north tasks by;

	Selecting North from the left hand menu bar.

	Click on the + icon in the top left

	Choose httpc from the plugin selection list

	Name your task

	Click on Next

	Configure the HTTP-C plugin

	[image: http_1]

	URL: The URL of the receiving South service, the address and port should match the service in the up stream Fledge. The URL can specify either HTTP or HTTPS protocols.

	Secondary URL: The URL to failover to if the connection to the primary URL fails. If failover is not required then leave this field empty.

	Source: The data to send, this may be either the reading data or the statistics data

	Proxy: The host and port of the proxy server to use. Leave empty is a proxy is not in use. This should be formatted as an address followed by a colon and then the port or a hostname followed by a colon and then the port. E.g. 192.168.0.42:8080. If the default port is used then the port may be omitted.

	Headers: An optional set of header fields to send in every request. The headers are defined as a JSON document with the name of each item in the document as header field name and the value the value of the header field.

	Script: An optional Python script that can be used to convert the payload format. If given the script should contain a method called convert that will be passed a single reading as a JSON DICT and must return the new payload as a string.

	Sleep Time Retry: A tuning parameter used to control how often a connection is retried to the up stream Fledge if it is not available. On every retry the time will be doubled.

	Maximum Retry: The maximum number of retries to make a connection to the up stream Fledge. When this number is reached the current execution of the task is suspended until the next scheduled run.

	Http Timeout (in seconds): The timeout to set on the HTTP connection after which the connection will be closed. This can be used to tune the response of the system when communication links are unreliable.

	Verify SSL: When HTTPS rather the HTTP is used this toggle allows for the verification of the certificate that is used. If a self signed certificate is used then this should not be enabled.

	Click Next

	Enable your task and click Done

Header Fields

Header fields can be defined if required using the Headers configuration item. This is a JSON document that defines a set of key/value pairs for each header field. For example if a header field token was required with the value of sfe93rjfk93rj then the Headers JSON document would be as follows

{
 "token" : "sfe93rjfk93rj"
}

Multiple header fields may be set by specifying multiple key/value pairs in the JSON document.

JSON Payload

The payload that is sent by this plugin is a simple JSON presentation of a set of reading values. A JSON array is sent with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	ts

	The timestamp as an ASCII string in ISO 8601 extended format. If no time zone information is given it is assumed to indicate the use of UTC. This timestamp is added by Fledge when it first reads the data.

	user_ts

	The timestamp as an ASCII string in ISO 8601 extended format. If no time zone information is given it is assumed to indicate the use of UTC. This timestamp is added by the device itself and can be used to reflect the timestamp the data refers to rather than the timestamp Fledge read the data.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within Fledge.

An example payload with a single reading would be as shown below

 [
 {
 "user_ts" : "2020-07-08 16:16:07.263657+00:00",
 "ts" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

Payload Script

If a script is given then it must provide a method called convert, that method is passed a single reading as a Python DICT and must return a formatted string payload for that reading.

As a simple example lets assume we want a JSON payload to be sent, but we want to use different keys to those in the default reading payload. We will replaces readings with data, user_ts with when and asset with device. A simple Python script to do this would be as follows;

import json
def convert(reading):
 newReading = {
 "data" : reading["readings"],
 "when" : reading["user_ts"],
 "device" : reading["asset"],
 }
 return json.dumps(newReading)

An HTTP request would be sent with one reading per request and that reading would be formatted as a JSON payload of the format

{
 "data":
 {
 "sinusoid": 0.0,
 "sine10": 10.0
 },
 "when": "2022-02-16 15:12:55.196494+00:00",
 "device": "sinusoid"
}

Note that white space and newlines have been added to improve the readability of the payload.

The above example returns a JSON format payload, the return may however not be encoded as JSON, for example an XML payload

from dict2xml import dict2xml
def convert(reading):
 newReading = {
 "data" : reading["readings"],
 "when" : reading["user_ts"],
 "device" : reading["asset"],
 }
 payload = "<reading>" + dict2xml(newReading) + "</reading>"
 return payload

This return XML format data as follows

<reading>
 <data>
 <sine10>10.0</sine10>
 <sinusoid>0.0</sinusoid>
 </data>
 <device>sinusoid</device>
 <when>2022-02-16 15:12:55.196494+00:00</when>
 </reading>

Note that white space and formatting have been added for ease of reading the XML data. You must also make sure you have installed the Python XML support as this is not normally installed with Fledge, To do this run

pip3 install dict2xml

from the command line of the Fledge machine.

 Kafka Producer

Kafka Producer

The fledge-north-kafka plugin sends data from Fledge to the an Apache Kafka. Fledge acts as a Kafka producer, sending reading data to Kafka. This implementation is a simplified producer that sends all data on a single Kafka topic. Each message contains an asset name, timestamp and set of readings values as a JSON document.

The configuration of the Kafka plugin is very simple, consisting of four parameters that must be set.

	[image: kafka]

	Bootstrap Brokers: A comma separate list of Kafka brokers to use to establish a connection to the Kafka system.

	Kafka Topic: The Kafka topic to which all data is sent.

	Send JSON: This controls how JSON data points should be sent to Kafka. These may be sent as strings or as JSON objects.

	Data Source: Which Fledge data to send to Kafka; Readings or Fledge Statistics.

 ThingSpeak

ThingSpeak

The fledge-north-thingspeak plugin provides a mechanism to ThingSpeak, allowing an easy route to send data from an Fledge environment into MATLAB.

In order to send data to ThingSpeak you must first create a channel to receive it.

	Login to your ThingSpeak account

	From the menu bar select the Channels menu and the My Channels option

	[image: thingspeak_1]

	Click on New Channel to create a new channel

	[image: thingspeak_2]

	Enter the details for your channel, in particular name and the set of fields. These field names should match the asset names you are going to send from Fledge.

	When satisfied click on Save Channel

	You will need the channel ID and the API key for your channel. To get this for a channel, on the My Channels page click on the API Keys box for your channel

	[image: thingspeak_3]

Once you have created your channel on ThingSpeak you may create your north task on Fledge to send data to this channel

	Select North from the left hand menu bar.

	Click on the + icon in the top left

	Choose ThingSpeak from the plugin selection list

	Name your task

	Click on Next

	Configure the plugin

	[image: thingspeak_4]

	URL: The URL of the ThingSpeak server, this can usually be left as the default.

	API Key: The write API key from the ThingSpeak channel you created

	Source: Controls if readings data or Fledge statistics are to be send to ThingSpeak

	Fields: Allows you to select what fields to send to ThingSpeak. It’s a JSON document that contains a single array called elements. Each item of the array is a JSON object that has two properties, asset and reading. The asset should match the asset you wish to send and the reading the data point name.

	Channel ID: The channel ID of your ThingSpeak Channel

	Click on Next

	Enable your north task and click on Done

 Fledge Filter Plugins

Fledge Filter Plugins

	Asset Filter
	Asset Rules

	Change Filter

	Delta Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Adding Python35 Filters

	Example

	Scripting Guidelines
	Importing Python Packages

	Use of Global Variables

	File IO Operations

	Threads within Python

	Interaction with External Systems

	Scripting Errors
	Error Messages & Warnings

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Threshold Filter
	Expressions

 Asset Filter

Asset Filter

The fledge-filter-asset is a filter that allows for assets to be included, excluded or renamed in a stream. It may be used either in South services or North tasks and is driven by a set of rules that define for each named asset what action should be taken.

Asset filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the asset plugin from the list of available plugins.

	Name your asset filter.

	Click Next and you will be presented with the following configuration page

	[image: asset]

	Enter the Asset rules

	Enable the plugin and click Done to activate it

Asset Rules

The asset rules are an array of JSON objects which define the asset name to which the rule is applied and an action. Actions can be one of

	include: The asset should be forwarded to the output of the filter

	exclude: The asset should not be forwarded to the output of the filter

	rename: Change the name of the asset. In this case a third property is included in the rule object, “new_asset_name”

In addition a defaultAction may be included, however this is limited to include and exclude. Any asset that does not match a specific rule will have this default action applied to them. If the default action it not given it is treated as if a default action of include had been set.

A typical set of rules might be

{
 "rules": [
 {
 "asset_name": "Random1",
 "action": "include"
 },
 {
 "asset_name": "Random2",
 "action": "rename",
 "new_asset_name": "Random92"
 },
 {
 "asset_name": "Random3",
 "action": "exclude"
 },
 {
 "asset_name": "Random4",
 "action": "rename",
 "new_asset_name": "Random94"
 },
 {
 "asset_name": "Random5",
 "action": "exclude"
 },
 {
 "asset_name": "Random6",
 "action": "rename",
 "new_asset_name": "Random96"
 },
 {
 "asset_name": "Random7",
 "action": "include"
 }
],
 "defaultAction": "include"
}

 Change Filter

Change Filter

The fledge-filter-change filter is used to only send information about an asset onward when a particular datapoint within that asset changes by more than a configured percentage. Data is sent for a period of time before and after the change in the monitored value. The amount of data to send before and after the change is configured in milliseconds, with a value for the pre-change time and one for the post-change time.

It is possible to define a rate at which readings should be sent regardless of the monitored value changing. This provides an average of the values of the period defined, e.g. send a 1 minute average of the values every minute.

This filter only operates on a single asset, all other assets are passed through the filter unaltered.

Change filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the change plugin from the list of available plugins.

	Name your change filter.

	Click Next and you will be presented with the following configuration page

	[image: change]

	Enter the configuration for your change filter

	Asset: The asset to monitor and control with this filter. This asset is both the asset that is used to look for changes and also the only asset whose data is affected by the triggered or non-triggered state of this filter.

	Trigger: The datapoint within the asset that is used to trigger the sending of data at full rate. This datapoint may be either a numeric value or a string. If it is a string then a change of value of the defined change percentage or greater will trigger the sending of data. If the value is a string then any change in value will trigger the sending of the data.

	Required Change %: The percentage change required for a numeric value change to trigger the sending of data. If this value is set to 0 then any change in the trigger value will be enough to trigger the sending of data.

	Pre-trigger time: The number of milliseconds worth of data before the change that triggers the sending of data will be sent.

	Post-trigger time: The number if milliseconds after a change that triggered the sending of data will be sent. If there is a subsequent change while the data is being sent then this period will be reset and the the sending of data will recommence.

	Reduced collection rate: The rate at which to send averages if a change does not trigger full rate data. This is defined as a number of averages for a period defined in the rateUnit, e.g. 4 per hour.

	Rate Units: The unit associated with the average rate above. This may be one of “per second”, “per minute”, “per hour” or “per day”.

	Enable the change filter and click on Done to activate your plugin

 Delta Filter

Delta Filter

The fledge-filter-delta is a filter that only forwards data that changes by more than a configurable percentage. It is used to remove duplicate data values from an asset stream. The definition of duplicate however allows for some noise in the reading value by requiring a delta percentage.

By defining a minimum rate it is possible to force readings to be sent at that defined rate when there is no change in the value of the reading. Rates may be defined as per second, per minute, per hour or per day.

Delta filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the delta plugin from the list of available plugins.

	Name your delta filter.

	Click Next and you will be presented with the following configuration page

	[image: delta]

	Configure the parameters of the delta filter

	Tolerance %: The percentage tolerance when comparing reading data. Only values that differ by more than this percentage will be considered as different from each other.

	Minimum Rate: The minimum rate at which readings should be sent. This is the rate at which readings will appear if there is no change in value.

	Minimum Rate Units: The units in which minimum rate is define (per second, minute, hour or day)

	Individual Tolerances: A JSON document that can be used to define specific tolerance values for an asset. This is defines as a set of name/value pairs for those assets that should use a tolerance percentage other than the global tolerances specified above. The following example would set the tolerance for the temperature asset to 15% and for the pressure asset to 5%. All other assets would use the tolerance specified in Tolerance %.

{
 "temperature" : 15,
 "pressure" : 5
}

	Enable the filter and click Done to complete the process of adding the new filter.

 Expression Filter

Expression Filter

The fledge-filter-expression allows an arbitrary mathematical expression to be applied to data values. The expression filter allows user to augment the data at the edge to include values calculate from one or more asset to be added and acted upon both within the Fledge system itself, but also forwarded on to the up stream systems. Calculations can range from very simply manipulates of a single value to convert ranges, e.g. a linear scale to a logarithmic scale, or can combine multiple values to create composite value. E.g. create a power reading from voltage and current or work out a value that is normalized for speed.

Expression filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the expression plugin from the list of available plugins.

	Name your expression filter.

	Click Next and you will be presented with the following configuration page

	[image: expression]

	Configure the expression filter

	Datapoint Name: The name of the new data point into which the new value will be stored.

	Expression to apply: This is the expression that will be evaluated for each asset reading. The expression will use the data points within the reading as symbols within the asset. See Expressions below.

	Enable the plugin and click Done to activate your filter

Expressions

The fledge-filter-expression plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

Within the expression the data points of the asset become symbols that may be used; therefore if an asset contains values “voltage” and “current” the expression will contain those as symbols and an expression of the form

voltage * current

can be used to determine the power in Watts.

When the filter is used in an environment in which more than one asset is passing through the filter then symbols are created of the form <asset name>.<data point>. As an example if you have one asset called “electrical” that has data points of “voltage” and “current” and another asset called “speed” that has a data point called “rpm” then you can write an expression to obtain the power per 1000 RPM’s of the motor as follows;

(electrical.voltage * electrical.current) / (speed.rpm / 1000)

 Fast Fourier Transform Filter

Fast Fourier Transform Filter

The fledge-filter-fft filter is designed to accept some periodic data such as a sample electrical waveform, audio data or vibration data and perform a Fast Fourier Transform on that data to supply frequency data about that waveform.

Data is added as a new asset which is named as the sampled asset with ” FFT” append. This FFT asset contains a set of data points that each represent the a band of frequencies, or as a frequency spectrum in a single array data point. The band information that is returned by the filter can be chosen by the user. The options available to represent each band are;

	the average in the band,

	the peak

	the RMS

	or the sum of the band.

The bands are created by dividing the frequency space into a number of equal ranges after first applying a low and high frequency filter to discard a percentage of the low and high frequency results. The bands are not created if the user instead opts to return the frequency spectrum.

If the low Pass filter is set to 15% and the high Pass filter is set to 10%, with the number of bands set to 5, the lower 15% of results are discarded and the upper 10% are discarded. The remaining 75% of readings are then divided into 5 equal bands, each of which representing 15% of the original result space. The results within each of the 15% bands are then averaged to produce a result for the frequency band.

FFT filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the fft plugin from the list of available plugins.

	Name your FFT filter.

	Click Next and you will be presented with the following configuration page

	[image: fft_1]

	Configure your FFT filter

	Asset to analysis: The name of the asset that will be used as the input to the FFT algorithm.

	[image: fft_2]

	Result Data: The data that should be returned for each band. This may be one of average, sum, peak, rms or spectrum. Selecting average will return the average amplitude within the band, sum returns the sum of all amplitudes within the frequency band, peak the greatest amplitude and rms the root mean square of the amplitudes within the band. Setting the output type to be spectrum will result in the full FFT spectrum data being written. Spectrum data however can not be sent to all north destinations as it is not supported natively on all the systems Fledge can send data to.

	Frequency Bands: The number of frequency bands to divide the resultant FFT output into

	Band Prefix: The prefix to add to the data point names for each band in the output

	No. of Samples per FFT: The number of input samples to use. This must be a power of 2.

	Low Frequency Reject %: A percentage of low frequencies to discard, effectively reducing the range of frequencies to examine

	High Frequency Reject %: A percentage of high frequencies to discard, effectively reducing the range of frequencies to examine

 Flir Validity Filter

Flir Validity Filter

The fledge-filter-Flir-Validity plugin is a simple filter that filters out unused boxes and spot temperatures in the Flir temperature data stream. The filter also allows the naming of the boxes such that the data points added to the asset will use these names rather than the default box1, box2 etc.

Adding the filter to a Flir AX8 south plugin you will receive a configuration screen as below

	[image: validity]

The JSON document Area Labels can be used to set the labels to use for each of the boxes and replace the min1, min2 etc. The value of this configuration option is a JSON document that has a single element called areas which is a JSON array. Each element in that area is the name to assign to the particular box. The default values would set the name of box1 to simply be 1, box2 to 2 etc.

If we assume we are monitoring a lathe with the camera and taking the temperature of the motor, the bearing and cutting bit using the boxes 1, 2, and 3 in the camera. We wish to rename the first box to be called Motor, the second box to be called Bearing and the third to be called Tool, setting an areas array as follows would achieve this.

{
 "areas" : [
 "Motor",
 "Bearing",
 "Tool",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9",
 "10"
]
}

Note that we do not change the boxes 4 to 10 as these are not in use and have not been defined within the area interface. Using the above configuration setting for areas will result in asset names of minMotor, maxMotor and averageMotor being generated for the motor temperature. Similarly the bearing temperatures would be minBearing, maxBearing and averageBearing. The tool would have asset names of minTool, maxTool and averageTool.

 Log Filter

Log Filter

The fledge-filter-log plugin is a simple filter that converts data to a logarithmic scale.

When adding a scale filter to either the south service or north task, via the Add Application option of the user interface, a configuration page for the filter will be shown as below;

	[image: log]

The Asset Filter entry is a regular expression that can be used to limit the assets that the filter will effect. To change all assets leave this entry blank.

 Metadata Filter

Metadata Filter

The fledge-filter-metadata filter allows data to be added to assets within Fledge. Metadata takes the form of fixed data points that are added to an asset used to add context to the data. Examples of metadata might be unit of measurement information, location information or identifiers for the piece of equipment to which the measurement relates.

A metadata filter may be added to either a south service or a north task. In a south service it will be adding data for just those assets that originate in that service, in which case it probably relates to a single machine that is being monitored and would add metadata related to that machine. In a north task it causes metadata to be added to all assets that the Fledge is sending to the up stream system, in which case the metadata would probably related to that particular Fledge instance. Adding metadata in the north is particularly useful when a hierarchy of Fledge systems is used and an audit trail is required with the data or the individual Fledge systems related to some physical location information such s building, floor and/or site.

To add a metadata filter

	Click on the Applications add icon for your service or task.

	Select the metadata plugin from the list of available plugins.

	Name your metadata filter.

	Click Next and you will be presented with the following configuration page

	[image: metadata]

	Enter your metadata in the JSON array shown. You may add multiple items in a single filter by separating them with commas. Each item takes the format of a JSON key/value pair and will be added as data points within the asset.

	Enable the filter and click on Done to activate it

Example Metadata

Assume we are reading the temperature of air entering a paint booth. We might want to add the location of the paint booth, the booth number, the location of the sensor in the booth and the unit of measurement. We would add the following configuration value

{
 "value": {
 "floor": "Third",
 "booth": 1,
 "units": "C",
 "location": "AirIntake"
 }
}

In above example the filter would add “floor”, “booth”, “units” and “location” data points to all the readings processed by it. Given an input to the filter of

{ "temperature" : 23.4 }

The resultant reading that would be passed onward would become

{ "temperature" : 23.5, "booth" : 1, "units" : "C", "floor" : "Third", "location" : "AirIntake" }

This is an example of how metadata might be added in a south service. Turning to the north now, assume we have a configuration whereby we have several sites in an organization and each site has several building. We want to monitor data about the buildings and install a Fledge instance in each building to collect building data. We also install a Fledge instance in each site to collect the data from each individual Fledge instance per building, this allows us to then send the site data to the head office without having to allow each building Fledge to have access to the corporate network. Only the site Fledge needs that access. We want to label the data to say which building it came from and also which site. We can do this by adding metadata at each stage.

To the north task of a building Fledge, for example the “Pearson” building, we add the following metadata

{
 "value" : {
 "building": "Pearson"
 }
}

Likewise to the “Lawrence” building Fledge instance we add the following to the north task

{
 "value" : {
 "building": "Lawrence"
 }
}

These buildings are both in the “London” site and will send their data to the site Fledge instance. In this instance we have a north task that sends the data to the corporate headquarters, in this north task we add

{
 "value" : {
 "site": "London"
 }
}

If we assume we measure the power flow into each building in terms of current, and for the Pearson building we have a value of 117A at 11:02:15 and for the Lawrence building we have a value of 71.4A at 11:02:23, when the data is received at the corporate system we would see readings of

{ "current" : 117, "site" : "London", "building" : "Pearson" }
{ "current" : 71.4, "site" : "London", "building" : "Lawrence" }

By adding the data like this it gives as more flexibility, if for example we want to change the way site names are reported, or we acquire a second site in London, we only have to change the metadata in one place.

 OMF Hint Filter

OMF Hint Filter

The fledge-filter-omfhint filter allows hints to be added to assets within Fledge that will be used by the OMF North plugin. These hints allow for individual configuration of specific assets within the OMF plugin.

A OMF hint filter may be added to either a south service or a north task. In a south service it will be adding data for just those assets that originate in that service. In a north task it causes OMF hints to be added to all assets that the Fledge is sending to the upstream system, it would normally only be used in a north that was using the OMF plugin, however it could be used in a north that is sending data to another Fledge that then forwards to OMF.

To add an OMF hints filter:

	Click on the Applications add icon for your service or task.

	Select the omfhint plugin from the list of available plugins.

	Name your OMF hint filter.

	Click Next and you will be presented with the following configuration page

	[image: omfhint]

	Enter your OMF Hints in the JSON editor shown. You may add multiple hints for multiple assets in a single filter instance. See OMF Hint data.

	Enable the filter and click on Done to activate it.

OMF Hint data

OMF Hints comprise of an asset name which the hint applies and a JSON document that is the hint. A hint is a name/value pair: the name is the hint type and the value is the value of that hint.

The asset name may be expressed as a regular expression, in which case the hint is applied to all assets that match that regular expression.

The following hint types are currently supported by OMF North:

	integer: The format to use for integers, the value is a string and may be any of the PI Server supported formats; int64, int32, int16, uint64, uint32 or uint16

	number: The format to use for numbers, the value is a string and may be any of the PI Server supported formats; float64, float32 or float16

	typeName: Specify a particular type name that should be used by the plugin when it generates a type for the asset. The value of the hint is the name of the type to create.

	tagName: Specify a particular tag name that should be used by the plugin when it generates a tag for the asset. The value of the hint is the name of the tag to create.

	type: Specify a pre-existing type that should be used for the asset. In this case the value of the hint is the type to use. The type must already exist within your PI Server and must be compatible with the values within the asset.

	datapoint: Specifies that this hint applies to a single datapoint within the asset. The value is a JSON object that contains the name of the datapoint and one or more hints.

	AFLocation: Specifies a location in the OSIsoft Asset Framework for the asset.
This hint is fully documented in the OMF North plugin page.

The following example shows a simple hint to set the number format to use for all numeric data within the asset names supply.

{
 "supply": {
 "number": "float32"
 }
}

To apply a hint to all assets, the single hint definition can be used with a regular expression.

{
 ".*": {
 "number": "float32"
 }
}

Regular expressions may also be used to select subsets of assets, in the following case only assets with the prefix OPCUA will have the hint applied.

{
 "OPCUA.*": {
 "number": "float32"
 }
}

To apply a hint to a particular data point the hint would be as follows

{
 "supply": {
 "datapoint" :
 {
 "name": "frequency"
 "integer": "uint16"
 }
 }
}

This example sets the datapoint frequency within the supply asset to be stored in the PI server as a uint16.

Datapoint hints can be combined with asset hints

{
 "supply": {
 "number" : "float32",
 "datapoint" :
 {
 "name": "frequency"
 "integer": "uint16"
 }
 }
}

In this case all numeric data except for frequency will be stored as float32 and frequency will be stored as uint16.

 Python 2.7 Filter

Python 2.7 Filter

The fledge-filter-python27 filter allows snippets of Python to be easily written that can be used as filters in Fledge. A similar filter exists that uses Python 3.5 syntax, the fledge-filter-python35 filter. A Python code snippet will be called with sets of asset readings as they or read or processed in a filter pipeline. The data appears in the Python code as a JSON document passed as a Python Dict type.

The user should provide a Python function whose name matches the name given to the plugin when added to the filter pipeline of the south service or north task, e.g. if you name your filter myPython then you should have a function named myPython in the code you enter. This function is send a set of readings to process and should return a set of processed readings. The returned set of readings may be empty if the filter removes all data.

A general code syntax for the function that should be provided is;

def myPython(readings):
 for elem in list(readings):
 ...
 return readings

Each element that is processed has a number of attributes that may be accessed

	Attribute

	Description

	asset_code

	The name of the asset the reading data relates to.

	timestamp

	The data and time Fledge first read this data

	user_timestamp

	The data and time the data for the data itself, this may differ from the timestamp above

	readings

	The set of readings for the asset, this is itself an object that contains a number of key/value pairs that are the data points for this reading.

In order to access an data point within the readings, for example one named temperature, it is a simple case of extracting the value of with temperature as its key.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 temp = reading['temperature']
 ...
 return readings

It is possible to write your Python code such that it does not know the data point names in advance, in which case you are able to iterate over the names as follows;

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 for attribute in reading:
 value = reading[attribute]
 ...
 return readings

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

Python27 filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the python27 plugin from the list of available plugins.

	Name your python27 filter, this should be the same name as the Python function you will provide.

	Click Next and you will be presented with the following configuration page

	[image: python35_1]

	Enter the configuration for your python27 filter

	Python script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will not be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the python27 filter and click on Done to activate your plugin

Example

The following example uses Python to create an exponential moving average plugin. It adds a data point called ema to every asset. It assumes a single data point exists within the asset, but it does not assume the name of that data point. A rate can be set for the EMA using the configuration of the plugin.

generate exponential moving average

import json

exponential moving average rate default value: include 7% of current value
rate = 0.07
latest ema value
latest = None

get configuration if provided.
set this JSON string in configuration:
{"rate":0.07}
def set_filter_config(configuration):
 global rate
 config = json.loads(configuration['config'])
 if ('rate' in config):
 rate = config['rate']
 return True

Process a reading
def doit(reading):
 global rate, latest

 for attribute in list(reading):
 if not latest:
 latest = reading[attribute]
 else:
 latest = reading[attribute] * rate + latest * (1 - rate)
 reading[b'ema'] = latest

process one or more readings
def ema(readings):
 for elem in list(readings):
 doit(elem['reading'])
 return readings

Examining the content of the Python, a few things to note are;

	The filter is given the name ema. This name defines the default method which will be executed, namely ema().

	The function ema is passed 1 or more readings to process. It splits these into individual readings, and calls the function doit to perform the actual work.

	The function doit walks through each attribute in that reading, updates a global variable latest with the latest value of the ema. It then adds an ema attribute to the reading.

	The function ema returns the modified readings list which then is passed to the next filter in the pipeline.

	set_filter_config() is called whenever the user changes the JSON configuration in the plugin. This function will alter the global variable rate that is used within the function doit.

 Python 3.5 Filter

Python 3.5 Filter

The fledge-filter-python35 filter allows snippets of Python to be easily written that can be used as filters in Fledge. A similar filter exists that uses Python 2.7 syntax, the fledge-filter-python27 filter, however it is recommended that the python35 filter is used by preference as it provides a more compatible interface to the rest of the Fledge components.

The purpose of the filter is to allow the user the flexibility to add their own processing into a pipeline that is not supported by any of the existing filters offered by Fledge. The philosophy of Fledge is to provide processing by adding a set of filters that act as a pipeline between a data source and and data sink. The data source may be the south plugin in the south service or the buffered readings data from the storage service in the case of a north service or task. The data sink is either the buffer within the storage service in the case of a south service or the north plugin that sends the data to the upstream system in the case of a north service or task. Each of the filters provides a small, focused operation on the data as it traverses the pipeline, data is passed from one filter in the pipeline to another.

The functionality provided by this filters gives the user the opportunity to write Python code that can manipulate the reading data as it flows, however that modification should follow the same guidelines and principles as followed in the filters that come supplied as part of the Fledge distribution or are contributed by other Fledge users. The overriding principles however are

	Do not duplicate existing functionality provided by existing filters.

	Keep the operations small and focused. It is better to have multiple filters each with a specific purpose than to create large, complex Python scripts.

	Do not buffer large quantities of data, this will effect the footprint of the service and also slow the data pipeline.

The Python code snippet that the user provides within this filter will be called with sets of asset readings as they or read or processed in a filter pipeline. The data appears in the Python code as a JSON document passed as a Python Dict type.

The user should provide a Python function whose name matches the name given to the plugin when added to the filter pipeline of the south service or north task, e.g. if you name your filter myPython then you should have a function named myPython in the code you enter. This function is passed a set of readings to process and should return a set of processed readings. The returned set of readings may be empty if the filter removes all data.

A general code syntax for the function that should be provided is as follows;

def myPython(readings):
 for elem in list(readings):
 ...
 return readings

The script iterates over the set of readings it is passed from the previous filter or the south plugin and returns the result of processing that data. Multiple readings are passed for two reasons, one is to improve the efficiency of processing and the second is because a south service or filter may ingest or process multiple readings in a single operation.

Each element that is processed has a number of attributes that may be accessed

	Attribute

	Description

	asset_code

	The name of the asset the reading data relates to.

	timestamp

	The data and time Fledge first read this data

	user_timestamp

	The data and time the data for the data itself, this may differ from the timestamp above

	readings

	The set of readings for the asset, this is itself an object that contains a number of key/value pairs that are the data points for this reading.

In order to access an data point within the readings, for example one named temperature, it is a simple case of extracting the value of with temperature as its key.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 temp = reading['temperature']
 ...
 return readings

It is possible to write your Python code such that it does not know the data point names in advance, in which case you are able to iterate over the names as follows;

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 for attribute in reading:
 value = reading[attribute]
 ...
 return readings

The Python script is not limited to returning the same number of readings it receives, additional readings may be added into the pipeline or readings may be removed. If the filter removes all the readings it was sent it must still return either an empty list or it may return the None object.

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

This function is called each time the configuration of the filter
is changed. The function is responsible for taking whatever actions
are required to change the behavior of the Python script. The most
common approach taken with the configuration function is to record
the configuration information in global variables for reference by the
Python script. This however is contrary to the recommendations for writing
Python scripts that are embedded within plugins.

There is little choice but to use globals in this case, however
precautions should be taken than minimize the risk of sharing common
global variables between instances.

	Do not use common names or names that are not descriptive. E.g. avoid simply calling the variable config.

	Do not use multiple variables, there are other options that can be used.

	Use a single Python DICT as reference individuals items within the DICT

	Create a Python class and use a global instance of the class

Adding Python35 Filters

Python35 filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the python35 plugin from the list of available plugins.

	Name your python35 filter, this should be the same name as the Python function you will provide.

	Click Next and you will be presented with the following configuration page

	[image: python35_1]

	Enter the configuration for your python35 filter

	Python script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will not be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the python35 filter and click on Done to activate your plugin

Example

The following example uses Python to create an exponential moving average plugin. It adds a data point called ema to every asset. It assumes a single data point exists within the asset, but it does not assume the name of that data point. A rate can be set for the EMA using the configuration of the plugin.

generate exponential moving average

import json

exponential moving average rate default value: include 7% of current value
rate = 0.07
latest ema value
latest = None

get configuration if provided.
set this JSON string in configuration:
{"rate":0.07}
def set_filter_config(configuration):
 global rate
 config = json.loads(configuration['config'])
 if ('rate' in config):
 rate = config['rate']
 return True

Process a reading
def doit(reading):
 global rate, latest

 for attribute in list(reading):
 if not latest:
 latest = reading[attribute]
 else:
 latest = reading[attribute] * rate + latest * (1 - rate)
 reading[b'ema'] = latest

process one or more readings
def ema(readings):
 for elem in list(readings):
 doit(elem['reading'])
 return readings

Examining the content of the Python, a few things to note are;

	The filter is given the name ema. This name defines the default method which will be executed, namely ema().

	The function ema is passed 1 or more readings to process. It splits these into individual readings, and calls the function doit to perform the actual work.

	The function doit walks through each attribute in that reading, updates a global variable latest with the latest value of the ema. It then adds an ema attribute to the reading.

	The function ema returns the modified readings list which then is passed to the next filter in the pipeline.

	set_filter_config() is called whenever the user changes the JSON configuration in the plugin. This function will alter the global variable rate that is used within the function doit.

Scripting Guidelines

The user has the full range of Python functionality available to them within the script code they provide to this filter, however caution should be exercised as it is possible to adversely impact the functionality and performance of the Fledge system by misusing Python features to the detriment of Fledge’s own features.

The overriding guidance given above should always be observed

	Do not duplicate existing functionality provided by existing filters.

	Keep the operations small and focused. It is better to have multiple filters each with a specific purpose than to create large, complex Python scripts.

	Do not buffer large quantities of data, this will effect the footprint of the service and also slow the data pipeline.

Importing Python Packages

The user is free to import whatever packages they wish in a Python script, this includes the likes of the numpy packages and other that are limited to a single instance within a Python interpreter.

Do not import packages that you do not use or are not required. This adds an extra overhead to the filter and can impact the performance of Fledge. Only import packages you actually need.

Python does not provide a mechanism to remove a package that has previously been imported, therefore if you import a package in your script and then update your script to no longer import the package, the package will still be in memory from the previous import. This is because we reload updated scripts without closing down as restarting the Python interpreter. This is part of the sharing of the interpreter that is needed in order to allow packages such as numpy and scipy to be used. This can lead to misleading behavior as when the service gets restarted the package will not be loaded and the script may break because it makes use of the package still.

If you remove a package import form your script and you want to be completely satisfied that the script will still run without it, then you must restart the service in which you are using the plugin. This can be done by disabling and then re-enabling the service.

Use of Global Variables

You may use global variables within your script and these globals will retain their value between invocations of the of processing function. You may use global variables as a method to keep information between executions and perform such operations as trend analysis based on data seen in previous calls to the filter function.

All Python code within a single service shares the same Python interpreter and hence they also share the same set of global variables. This means you must be careful as to how you name global variables and also if you need to have multiple instances of the same filter in a single pipeline you must be aware that the global variables will be shared between them. If your filter uses global variables it is normally not recommended to have multiple instances of them in the same pipeline.

It is tempting to use this sharing of global variables as a method to share information between filters, this is not recommended as should not be used. There are several reasons for this

	It provides data coupling between filters, each filter should be independent of each other filter.

	One of the filters sharing global variables may be disabled by the user with unexpected consequences.

	Filter order may be changed, resulting in data that is expected by a later filter in the chain not being available.

	Intervening filters may add or remove readings resulting in the data in the global variables not referring to the same reading, or set of readings that it was intended to reference.

If you no wish one filter to pass data onto a later filter in the pipeline this is best done by adding data to the reading, as an extra data point. This data point can then be removed by the later filter. An example of this is the way Fledge adds OMF hints to readings that are processed and removed by the OMF north plugin.

For example let us assume we have calculated some value delta that we wish to pass to a later filter, we can add this as a data point to our reading which we will call _hintDelta.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 ...
 reading['_hintDelta'] = delta
 ...
 return readings

This is far better than using a global as it is attached to the reading to which it refers and will remain attached to that reading until it is removed. It also means that it is independent of the number of readings that are processed per call, and resilient to readings being added or removed from the stream.

The name chosen for this data point in the example above has no significance, however it is good practice to choose a name that is unlikely to occur in the data normally and portrays the usage or meaning of the data.

File IO Operations

It is possible to make use of file operations within a Python35 filter function, however it is not recommended for production use for the following reasons;

	Pipelines may be moved to other hosts where files may not be accessible.

	Permissions may change dependent upon how Fledge systems are deployed in the various different scenarios.

	Edge devices may also not have large, high performance storage available, resulting in performance issues for Fledge or failure due to lack of space.

	Fledge is designed to be managed solely via the Fledge API and applications that use the API. There is no facility within that API to manage arbitrary files within the filesystem.

It is common to make use of files during development of a script to write information to in order to aid development and debugging, however this should be removed, along with associated imports of packages required to perform the file IO, when a filter is put into production.

Threads within Python

It is tempting to use threads within Python to perform background activity or to allow processing of data sets in parallel, however there is an issue with threading in Python, the Python Global Interpreter Lock or GIL. The GIL prevents two Python statements from being executed within the same interpreter by two threads simultaneously. Because we use a single interpreter for all Python code running in each service within Fledge, if a Python thread is created that performs CPU intensive work within it, we block all other Python code from running within that Fledge service.

We therefore avoid using Python threads within Fledge as a means to run CPU intensive tasks, only using Python threads to perform IO intensive tasks, using the asyncio mechanism of Python 3.5.3 or later. In older versions of Fledge we used multiple interpreters, one per filter, in order to workaround this issue, however that had the side effect that a number of popular Python packages, such as numpy, pandas and scipy, could not be used as they can not support multiple interpreters within the same address space. It was decided that the need to use these packages was greater than the need to support multiple interpreters and hence we have a single interpreter per service in order to allow the use of these packages.

Interaction with External Systems

Interaction with external systems, using network connections or any form of blocking communication should be avoided in a filter. Any blocking operation will cause data to be blocked in the pipeline and risks either large queues of data accumulating in the case of asynchronous south plugins or data begin missed in the case of polled plugins.

Scripting Errors

If an error occurs in the plugin or Python script, including script coding errors and Python exception, details will be logged to the error log and data will not flow through the pipeline to the next filter or into the storage service.

Warnings raised will also be logged to the error log but will not cause data to cease flowing through the pipeline.

To view the error log you may examine the file directly on your host machine, for example /var/log/syslog on a Ubuntu host, however it is also possible to view the error logs specific to Fledge from the Fledge user interface. Select the System option under Logs in the left hand menu pane. You may then filter the logs for a specific service to see only those logs that refer to the service which uses the filter you are interested in.

	[image: logview_1]

Alternatively if you open the dialog for the service in the South or North menu items you will see two icons displayed in the bottom left corner of the dialog that lets you alter the configuration of the service.

	[image: logview_2]

The left most icon, with the ? in a circle, allows you to view the documentation for the plugin, the right most icon, which looks like a page of text with a corner folded over, will open the log view page filtered to view the service.

Error Messages & Warnings

The following are some errors you may see within the log with some description of the cause and remedy for the error.

	Unable to obtain a reference to the asset tracker. Changes will not be tracked
	The service is unable to obtain the required reference to the asset tracker within Fledge. Data will continue to flow through the pipeline, but there will not be ant trace of the assets that have been modified by this plugin within the pipeline.

	The return type of the python35 filter function should be a list of readings.
	The python script has returned an incorrect data type. The return value of the script should be a list of readings

	Badly formed reading in list returned by the Python script
	One or more of the readings in the list returned by the Python script is an incorrectly formed reading object.

	Each element returned by the script must be a Python DICT
	The list returned by the Python script contains an element that is not a DICT and therefore can not be a valid reading.

	Badly formed reading in list returned by the Python script: Reading has no asset code element
	One or more of the readings that is returned in the list from the script is missing the asset_code key. This item is the name of the asset to which the reading refers.

	Badly formed reading in list returned by the Python script: Reading is missing the reading element which should contain the data
	One or more of the readings that is returned in the list from the script is missing the reading DICT that contains the actual data.

	Badly formed reading in list returned by the Python script: The reading element in the python Reading is of an incorrect type, it should be a Python DICT
	One or more of the readings that is returned in the list from the script has an item with a key of reading which is not a Python Dict. This item should always be a DICT and contains the data values as key/value pairs.

	Badly formed reading in list returned by the Python script: Unable to parse the asset code value. Asset codes should be a string.
	One or more of the readings that is returned in the list from the script has an item with a key of asset_code whose value is not a string.

 Rate Filter

Rate Filter

The fledge-filter-rate plugin that can be used to reduce the rate a reading is stored
until an interesting event occurs. The filter will read data at full
rate from the input side and buffer data internally, sending out averages
for each value over a time frame determined by the filter configuration.

The user can provide either one or two simple expressions that will be evaluated to
form a trigger for the filter. One expressions will set the trigger and
the other will clear it. When the trigger is set then the filter will
no longer average the data over the configured time period, but will
instead send the full bandwidth data out of the filter. If the second expression, the
one that clears the full rate sending of data is omitted then the full rate is
cleared as soon as the trigger expression returns false. Alternatively the filter can be
configured to clear the sending of full rate data after a fixed time.

The filter also allows a pre-trigger time to be configured. In this
case it will buffer this much data internally and when the trigger is
initially set this pre-buffered data will be sent. The pre-buffered data
is discarded if the trigger is not set and the data gets to the defined
age for holding pre-trigger information.

Rate filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the rate plugin from the list of available plugins.

	Name your rate filter.

	Click Next and you will be presented with the following configuration page

	[image: rate_1]

	Configure your rate filter

	Trigger Expression: An expression to set the trigger for full rate data

	Terminate ON: The mechanism to stop full rate forwarding, this may be another expression or a time window

	[image: rate_2]

	End Expression: An expression to clear the trigger for full rate data, if left blank this will simply be the trigger filter evaluating to false

	Full rate time (ms): The time window, in milliseconds to forward data at the full rate

	Pre-trigger time (ms): An optional pre-trigger time expressed in milliseconds

	Reduced collection rate: The nominal data rate to send data out. This defines the period over which is outgoing data item is averaged.

	Rate Units: The units that the reduced collection rate is expressed in; per second, minute, hour or day

	[image: rate_3]

	Exclusions: A set of asset names that are excluded from the rate limit processing and always sent at full rate

	Enable your filter and click Done

For example if the filter is working with a SensorTag and it reads the tag
data at 10ms intervals but we only wish to send 1 second averages under
normal circumstances. However if the X axis acceleration exceed 1.5g
then we want to send full bandwidth data until the X axis acceleration
drops to less than 0.2g, and we also want to see the data for the 1
second before the acceleration hit this peak the configuration might be:

	Nominal Data Rate: 1, data rate unit “per second”

	Trigger set expression: X > 1.5

	Trigger clear expression: X < 0.2

	Pre-trigger time (mS): 1000

The trigger expression uses the same expression mechanism, ExprTk as the
fledge-south-expression, fledge-filter-expression and fledge-filter-threshold plugins

Expression may contain any of the following…

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

	Equalities & Inequalities (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

Note

This plugin is designed to work with streams with a single asset in the stream, there is no mechanism in the expression syntax to support multiple asset names.

 Rename Filter

Rename Filter

The fledge-filter-rename filter that can be used to modify the name of an asset, datapoint or both. It may be used either in South services or North services or North tasks.

To add a Rename filter

	Click on the Applications add icon for your service or task.

	Select the rename plugin from the list of available plugins.

	Name your Rename filter.

	Click Next and you will be presented with the following configuration page

	Configure the plugin

	[image: rename]

	Operation: Search and replace operation be performed on asset name, datapoint name or both

	Find: A regular expression to match for the given operation

	Replace With: A substitution string to replace the matched text with

	Enable the filter and click on Done to activate it

Example

The simplest following example perform on given below reading object

{
 "readings": {
 "sinusoid": -0.978147601,
 "a": {
 "sinusoid": "2.0"
 }
 },
 "asset": "sinusoid",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace an asset apply a configuration would be as follows

	Operation : asset

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sinusoid": -0.978147601,
 "a": {
 "sinusoid": 2.0
 }
 },
 "asset": "sin",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace a datapoint apply a configuration would be as follows

	Operation : datapoint

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sin": -0.978147601,
 "a": {
 "sin": 2.0
 }
 },
 "asset": "sinusoid",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace both asset and datapoint apply a configuration would be as follows

	Operation : both

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sin": -0.978147601,
 "a": {
 "sin": 2.0
 }
 },
 "asset": "sin",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

 Replace Filter

Replace Filter

The fledge-filter-replace is a filter that allows an be used to replace all occurrence of a set of characters with a single replacement character. This can be used to change reserved characters in the names of assets and datapoints.

	[image: replace]

	Replace: The set of reserved characters to be replaced.

	With: The character to replace each occurrence of the above characters with

 Root Mean Squared (RMS) Filter

Root Mean Squared (RMS) Filter

The fledge-filter-rms filter is designed to accept some periodic data such as a sample electrical waveform, audio data or vibration data and perform a Root Mean Squared, RMS operation on that data to supply power of the waveform. The filter can also return the peak to peak amplitude f the waveform over the sampled period and the crest factor of the waveform.

Note

peak values may be less than individual values of the input if the asset value does not fall to or below zero. Where a data value swings between negative and positive values then the peak value will be greater than the maximum value in the data stream. For example if the minimum value of a data point in the sample set is 0.3 and the maximum is 3.4 then the peak value will be 3.1. If the maximum value is 2.4 and the minimum is zero then the peak will be 2.4. If the maximum value is 1.7 and the minimum is -0.5 then the peak value will be 2.2.

RMS, also known as the quadratic mean, is defined as the square root of the mean square (the arithmetic mean of the squares of a set of numbers).

Peak to peak, is the difference between the smallest value in the sampled data and the highest, this give the maximum amplitude variation during the period sampled.

Crest factor is a parameter of a waveform, showing the ratio of peak values to the effective value. In other words, crest factor indicates how extreme the peaks are in a waveform. Crest factor 1 indicates no peaks, such as direct current or a square wave. Higher crest factors indicate peaks, for example sound waves tend to have high crest factors.

The user may also choose to include or not the raw data that is used to calculate the RMS values via a switch in the configuration.

Where a data stream has multiple assets within it the RMS filter may be limited to work only on those assets whose name matches a regular expression given in the configuration of the filter. The default for this expression is .*, i.e. all assets are processed.

RMS filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the rms plugin from the list of available plugins.

	Name your RMS filter.

	Click Next and you will be presented with the following configuration page

	[image: rms_1]

	Configure your RMS filter

	Sample size: The number of data samples to perform a calculation over.

	RMS Asset name: The asset name to use to output the RMS values. “%a” will be replaced with the original asset name.

	Include Peak Values: A switch to include peak to peak measurements for the same data set as the RMS measurement.

	Include Crest Values: A switch to include crest measurements for the same data set as the RMS measurement.

	Include Raw Data: A switch to include the raw input data in the output.

	Asset Filter: A regular expression to limit the asset names on which this filter operations. Useful when multiple assets appear in the input data stream as it allows data which is not part of the periodic function that is being examined to be excluded.

 Scale Filter

Scale Filter

The fledge-filter-scale plugin is a simple filter that allows a scale factor and an offset to be applied to numerical data. It’s primary uses are for adjusting values to match different measurement scales, for example converting temperatures from Centigrade to Fahrenheit or when a sensor reports a value in non-base units, e.g. 1/10th of a degree.

When adding a scale filter to either the south service or north task, via the Add Application option of the user interface, a configuration page for the filter will be shown as below;

	[image: scale]

The configuration options supported by the scale filter are detailed in the table below

	Setting

	Description

	Scale Factor

	The scale factor to multiply the numeric values by

	Constant Offset

	A constant to add to all numeric values after applying the scale

	Asset filter

	This is useful when applying the filter in the north, it allows
the filter to be applied only to those assets that match the
regular expression given. If left blank then the filter is
applied to all assets/

 Scale Set Filter

Scale Set Filter

The fledge-filter-scale-set plugin is a filter that allows a scale factor and an offset to be applied to numerical data where an asset has multiple data points. It is very similar to the fledge-filter-scale filter, which allows a single scale and offset to be applied to all assets and data points. It’s primary uses are for adjusting values to match different measurement scales, for example converting temperatures from Centigrade to Fahrenheit or when a sensor reports a value in non-base units, e.g. 1/10th of a degree.

Scale set filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the scale-set plugin from the list of available plugins.

	Name your scale-set filter.

	Click Next and you will be presented with the following configuration page

	[image: scaleset_1]

	Enter the configuration for your change filter

	Scale factors: A JSON document that defines a set of factors to apply. It is an array of JSON objects that define the scale factor and offset, a regular expression that is matched against the asset name and another that matches the data point name within the asset.

	Name

	Description

	asset

	A regular expression to match against the asset name. The scale factor is only
applied to assets whose name matches this regular expression.

	datapoint

	A regular expression to match against the data point name within a matching asset.
The scale factor is only applied to assets whose name matches this regular expression.

	scale

	The scale factor to apply to the numeric data.

	offset

	The offset to add to the matching numeric data.

	Enable the scale-set filter and click on Done to activate your plugin

Example

In the following example we have an asset whose name is environment which contains two data points; temperature and humidity. We wish to allow two different scale factors and offsets to these two data points whilst not affecting assets of any other name in the data stream. We can accomplish this by using the following JSON document in the plugin configuration;

{
 "factors" : [
 {
 "asset" : "environment",
 "datapoint" : "temperature",
 "scale" : 1.8,
 "offset" : 32
 },
 {
 "asset" : "environment",
 "datapoint" : "humidity",
 "scale" : 0.1,
 "offset" : 0
 }
]
}

If instead we had multiple assets that contain temperature and humidity we can accomplish the same transformation on all these assets, whilst not affecting any other assets, by changing the asset regular expression to something that matches more asset names;

{
 "factors" : [
 {
 "asset" : ".*",
 "datapoint" : "temperature",
 "scale" : 1.8,
 "offset" : 32
 },
 {
 "asset" : ".*",
 "datapoint" : "humidity",
 "scale" : 0.1,
 "offset" : 0
 }
]
}

 Threshold Filter

Threshold Filter

The fledge-filter-threshold plugin is a filter that is used to control the forwarding of data within Fledge. Its use is to only allow data to be stored or forwarded if a condition about that data is true. This can save storage or network bandwidth by eliminating data that is of no interest.

The filter uses an expression, that is entered by the user, to evaluate if data should be forwarded, if that expression evaluates to true then the data is forwarded, in the case of a south service this would be to the Fledge storage. In the case of a north task this would be to the upstream system.

Note

If the threshold filter is part of a chain of filters and the data is not forwarded by the threshold filter, i.e. the expression evaluates to false, then the following filters will not receive the data.

If an asset in the case of a south service, or data stream in the case of a north task, has other data points or assets that are not part of the expression, then they too are subject to the threshold. If the expression evaluates to false then no assets will be forwarded on that stream. This allows a single value to control the forwarding of data.

Another example use might be to have two north streams, one that uses a high cost, link to send data when some condition that requires close monitoring occurs and the other that is used to send data by a lower cost mechanism when normal operating conditions apply.

E.g. We have a temperature critical process, when the temperature is above 80 degrees it most be closely monitored. We use a high cost link to send data north wards in this case. We would have a north task setup that has the threshold filter with the condition:

temperature >= 80

We then have a second, lower cost link with a north task using the threshold filter with the condition:

temperature < 80

This way all data is sent once, but data is sent in an expedited fashion if the temperature is above the 80 degree threshold.

Threshold filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the threshold plugin from the list of available plugins.

	Name your threshold filter.

	Click Next and you will be presented with the following configuration page

	[image: threshold]

	Enter the expression to control forwarding in the box labeled Expression

	Enable the filter and click on Done to activate it

Expressions

The fledge-filter-threshold plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Comparison operators (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

Within the expression the data points of the asset become symbols that may be used; therefore if an asset contains values “voltage” and “current” the expression will contain those as symbols and an expression of the form

voltage * current > 1000

can be used to determine if power (voltage * current) is greater than 1kW.

 Fledge Notification Rule Plugins

Fledge Notification Rule Plugins

	Threshold Rule

	Moving Average Rule

	Delta Rule

	Expression Rule

	Watchdog Rule

 Threshold Rule

Threshold Rule

The threshold rule is used to detect the value of a data point within an asset going above or below a set threshold.

The configuration of the rule allows the threshold value to be set, the operation and the datapoint used to trigger the rule.

	[image: threshold]

	Asset name: The name of the asset that is tested by the rule.

	Datapoint Name: The name of the datapoint in the asset used for the test.

	Condition: The condition that is being tested, this may be one of >, >=, <= or <.

	Trigger value: The value used for the test.

	Evaluation data: Select if the data evaluate is a single value or a window of values.

	Window evaluation: Only valid if evaluation data is set to Window. This determines if the value used in the rule evaluation is the average, minimum or maximum over the duration of the window.

	Time window: Only valid if evaluation data is set to Window. This determines the time span of the window.

 Moving Average Rule

Moving Average Rule

The fledge-rule-average plugin is a notifcation rule that is used to detect when a value moves outside of the determined average by more than a specified percentage. The plugin only monitors a single asset, but will monitor all data points within that asset. It will trigger if any of the data points within the asset differ by more than the configured percentage, an average is maintained for each data point separately.

During the configuration of a notification use the screen presented to choose the average plugin as the rule.

	[image: average_1]

The next screen you are presented with provides the configuration options for the rule.

	[image: average_2]

The Asset entry field is used to define the single asset that the plugin should monitor.

The Deviation % defines how far away from the observed average the current value should be in order to considered as triggering the rule.

	[image: average_3]

The Direction entry is used to define if the rule should trigger when the current value is above average, below average or in both cases.

	[image: average_4]

The Average entry is used to determine what type of average is used for the calculation. The average calculated may be either a simple moving average or an exponential moving average. If an exponential moving average is chosen then a second configuration parameter, EMA Factor, allows the setting of the factor used to calculate that average.

Exponential moving averages give more weight to the recent values compared to historical values. The smaller the EMA factor the more weight recent values carry. A value of 1 for EMA Factor will only consider the most recent value.

Note

The Average rule is not applicable to all data, only simple numeric values are considered and those values should not deviate with an average of 0 or close to 0 if good results are required. Data points that deviate wildly are also not suitable for this plugin.

 Delta Rule

Delta Rule

The fledge-rule-delta plugin is a notification rule that triggers when a data point value changes. When a datapoint that is monitored changes the plugin will trigger. An alias value is given for the triggered datapoint and is included in the reason massage when the plugin triggers.

During the configuration of a notification use the screen presented to choose the delta plugin as the rule.

	[image: delta_1]

The next screen you are presented with provides the configuration options for the rule.

	[image: delta_2]

	Asset: define the single asset that the plugin should monitor.

	Datapoints: the datapoints monitor and the alias for the datapoint that is used in the trigger reason.

 Expression Rule

Expression Rule

The fledge-rule-simple-expression is a notification rule plugin that evaluates a user defined function to determine if a notification has triggered or not. The rule will work with a single asset, but does allow access to all the data points within the asset.

During the configuration of a notification use the screen presented to choose the average plugin as the rule.

	[image: expression_1]

The next screen you are presented with provides the configuration options for the rule.

	[image: expression_2]

The Asset entry field is used to define the single asset that the plugin should monitor.

The Expression to apply defines the expression that will be evaluated each time the rule is checked. This should be a boolean expression that returns true when the rule is considered to have triggered. Each data point within the asset will become a symbol in the expression, therefore if your asset contains a data point called voltage, the symbol voltage can be used in the expression to obtain the current voltage reading. As an example to create an under voltage notification if the voltage falls below 48 volts, the expression to use would be;

voltage < 48

The trigger expression uses the same expression mechanism, ExprTk as the
fledge-south-expression, fledge-filter-expression and fledge-filter-threshold plugins

Expression may contain any of the following…

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

	Equalities & Inequalities (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

 Watchdog Rule

Watchdog Rule

The fledge-rule-watchdog is a notification rule plugin that is to detect the absence of data. The plugin is simply configured with the name of an asset to track and a period to test over. If no new readings are observed within that specified period of time then the rule will trigger.

During configuration of the notification choose the WatchDog rule from the set of available rules.

	[image: watchdog_1]

The next step in the process is to enter the configuration options for the watchdog rule.

	[image: watchdog_2]

	Asset name: The name of the asset to track.

	Evaluation interval in ms: The period of time to monitor for new readings of the asset. This is expressed in milliseconds.

As soon as the configured time period expires, if no readings for the asset have been observed then the rule will trigger.

It is important to consider the tuning of the south service buffering when setting up watchdog plugins. The watchdog is based on data entering the Fledge buffer, hence if the south service buffers data for a period that is the same or close to the watchdog period then false triggering of the watchdog may occur. Ensure the south service maximum latency is less than the watchdog interval for reliable behavior.

 Fledge Notification Delivery Plugins

Fledge Notification Delivery Plugins

	Amazon Alexa Notification

	Asset Notification

	Control Dispatcher Notification
	Trigger Values

	Custom Asset Notification
	Store Configuration

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	MQTT Notification

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

 Amazon Alexa Notification

Amazon Alexa Notification

The fledge-notify-alexa notification delivery plugin sends notifications via Amazon Alexa devices using the Alexa NotifyMe skill.

When you receive a notification Alexa will make a noise to say you have a new notification
and the green light on your Alexa device will light to say you have waiting notifications.
To hear your notifications simply say “Alexa, read my notifications”

To enable notifications on an Alexa device

	You must enable the NotifyMe skill on your Amazon Alexa device.

	Link this skill to your Amazon account

	NotifyMe will send you an access code that is required to configure this plugin.

Once you have created your notification rule and move on to the delivery mechanism

	Select the alexa plugin from the list of plugins

	Click Next

	[image: alexa_1]

	Configure the plugin

	Access Code: Paste the access code you received from the NotifyMe application here

	Title: This is the title that the Alexa device will read to you

	Enable the plugin and click Next

	Complete your notification setup

When you notification triggers the Alexa device will read the title text to you followed by either “Notification has triggered” or “Notification has cleared”.

 Asset Notification

Asset Notification

The fledge-notify-asset notification delivery plugin is unusually in that it does not notify an external system, instead it creates a new asset which is then processed like any other asset within Fledge. This plugin is useful to inform up stream systems that a event has occurred and allow them to take action or merely as a way to have a record of a condition occurring which may not require any further actions.

Once you have created your notification rule and move on to the delivery mechanism

	Select the asset plugin from the list of plugins

	Click Next

	[image: asset_1]

	Now configure the asset delivery plugin

	Asset: The name of the asset to create.

	Description: A textual description to add to the asset

	Enable the plugin and click Next

	Complete your notification setup

The asset that will be created when the notification triggers will contain

	The timestamp of the trigger event

	Three data points

	rule: The name of the notification that triggered this asset creation

	description: The textual description entered in the configuration of the delivery plugin

	event: This will be one of triggered or cleared. If the notification type was not set to be toggled then the cleared event will not appear. If toggled was set as the notification type then there will be a triggered value in the asset created when the rule triggered and a cleared value in the asset generated when the rule moved from the triggered to untriggered state.

 Control Dispatcher Notification

Control Dispatcher Notification

The fledge-notify-control notification delivery plugin is a mechanism by which a notification can be used to send set point control writes and operations via the control dispatcher service.

Once you have created your notification rule and move on to the delivery mechanism

	Select the control plugin from the list of plugins

	Click Next

	[image: control_1]

	Configure the plugin

	Trigger Value: The control payload to send to the dispatcher service. These are set when the notification rule triggers.

	Cleared Value: The control payload to send to the dispatcher service. There are set when the notification rule clears.

	Enable the plugin and click Next

	Complete your notification setup

Trigger Values

The Trigger Value and Cleared Value are JSON documents that are sent to the dispatcher. The format of these is a JSON document that describes the control operation to perform. The document contains a definition of the recipient of the control input, this may be a south service, an asset, an automation script or all south services. If the recipient is a service then the document contains a service key, the value of which is the name of the south service that should receive the control operation. To send the control request to the south service responsible for the ingest of a particular asset, then an asset key would be given. If sending to an automation script then a script key would be given. If known of the service, asset or script keys are given then the request will be sent to all south services that support control.

The document also contains the control request that should be made, either a write or an operation and the values to write or the name and parameters of the operation to perform.

The example below shows a JSON document that would cause the two values temperature and rate to be written to the south service called oven001.

{
 "service" : "oven001",
 "write": {
 "temperature" : "110",
 "rate" : "245"
 }
}

In this example the values are constants defined in the plugin configuration. It is possible however to use values that are in the data that triggered the notification.

As an example of this assume we are controlling the speed of a fan based on the temperature of an item of equipment. We have a south service that is reading the temperature of the equipment, let’s assume this is in an asset called equipment which has a data point called temperature. We add a filter using the fledge-filter-expression filter to calculate a desired fan speed. The expression we will use in this example is desiredSpeed = temperature * 100. This will case the asset to have a second data point called desiredSpeed.

We create a notification that is triggered if the desiredSpeed is greater than 0. The delivery mechanism will be this plugin, fledge-notify-setpoint. We want to set two values in the south plugin speed to set the speed of the fan and run which controls if the fan is on or off. We set the Trigger Value to the following

{
 "service" : "fan001",
 "write": {
 "speed" : "$equipment.desiredSpeed$",
 "run" : "1"
 }
 }

In this case the speed value will be substituted by the value of the desiredSpeed data point of the equipment asset that triggered the notification to be sent.

If then fan is controlled by the same south service that is ingesting the data into the asser equipment, then we could use the asset destination key rather than name the south service explicitly.

{
 "asset" : "equipment",
 "write": {
 "speed" : "$equipment.desiredSpeed$",
 "run" : "1"
 }
 }

Another option for controlling the destination of a control request is to broadcast it to all south services. In this example we will assume we want to trigger a shutdown operation across all the devices we monitor.

{
 "operation" : {
 "shutdown" : { }
 }
}

Here we are not giving asset, script or service keys, therefore the control request will be broadcast. Also we have used an operation rather than a write request. The operation name is shutdown and we have assumed it takes no arguments.

 Custom Asset Notification

Custom Asset Notification

The fledge-notify-customasset notification delivery plugin is a plugin that creates an event asset in the Fledge readings. This event asset can be customised via the configuration and may include data from the asset that triggered the notification.

The asset created will contain a number of data points

	description: A fixed description that is set in the plugin configuration.

	event: The event that caused the asset to be created. This may be one of triggered or cleared.

	rule: The name of the notification rule that triggered the notification.

	store: The data that triggered the notification.

Once you have created your notification rule and move on to the delivery mechanism

	Select the customasset plugin from the list of plugins

	Click Next

	[image: asset_1]

	Configure the plugin

	Custom Asset: The name of the assert to create

	Description: The content to add in the description data point within the asset

	JSON Configuration: This is a description of how to map the asset that triggered the notification to the data in the store data point of the event asset.

	Enable authentication: Enable the authentication of the plugin to the Fledge API

	Username: The user name to use when connecting to the Fledge API

	Password: The password to use when connecting to the Fledge API

	Enable the plugin and click Next

	Complete your notification setup

Store Configuration

The content of the store data point would normally contain data from the reading that triggered the notification. It will be written as a JSON data point type and will always contain the timestamp of the reading that triggered this notification.

The configuration consists of one or more asset names as a key, the value is an array of objects that defines the data point names to extract from the triggering asset and an alias to use in the store. The example below would include the sinusoid asset and the data point within sinusoid, also called sinusoid. However it would write this value using an alias of cosinusoid.

{
 "sinusoid": [
 {
 "sinusoid": "cosinusoid"
 }
]
}

This would result in an asset with a store data point that would be as follows

{"sinusoid":{"cosinusoid":0.994521895,"timestamp":"2022-09-08 11:31:29.323666 +0000"}}

 Email Notifications

Email Notifications

The fledge-notify-email delivery notification plugin allows notifications to be delivered as email messages. The plugin uses an SMTP server to send email and requires access to this to be configured as part of configuring the notification delivery method.

During the creation of your notification select the email notification plugin from the list of available notification mechanisms. You will be prompted with a configuration dialog in which to enters details of your SMTP server and of the email you wish to send.

	[image: email_1]

	To address: The email address to which the notification will be sent

	To: A textual name for the recipient of the email

	Subject: A Subject to put in the email message

	From address: A from address to use for the email message

	From name: A from name to include in the email

	SMTP Server: The address of the SMTP server to which to send messages

	SMTP Port: The port of your SMTP server

	SSL/TLS: A toggle to control if SSL/TLS encryption should be used when communicating with the SMTP server

	Username: A username to use to authenticate with the SMTP server

	Password: A password to use to authenticate with the SMTP server.

 Google Chat

Google Chat

The fledge-notify-google-hangouts plugin allows notifications to be delivered to the Google chat platform. The notification are delivered into a specific chat room within the application, in order to allow access to the chat room you must create a webhook for sending data to that chatroom.

To create a webhook

	Go to the Google Chat page in your browser

	[image: chat_1]

	Select the chat room you wish to use or create a new chat room

	In the menu at the top of the screen select Configure webhooks

	[image: chat_2]

	Enter a name for your webhook and optional avatar and click Save

	[image: chat_3]

	Copy the URL that appears under your webhook name, you can use the copy icon next to the URL to place it in the clipboard

	[image: chat_6]

	Close the webhooks window by clicking outside the window

Once you have created your notification rule and move on to the delivery mechanism

	Select the Hangouts plugin from the list of plugins

	Click Next

	[image: chat_4]

	Now configure the asset delivery plugin

	Google Hangout Webhook URL: Paste the URL obtain above here

	Message Text: Enter the message text you wish to send

	Enable the plugin and click Next

	Complete your notification setup

A message will be sent to this chat room whenever a notification is triggered.

	[image: chat_5]

 IFTTT Delivery Plugin

IFTTT Delivery Plugin

The fledge-notify-ifttt is a notification delivery plugin designed to trigger an action on the If This Than That IoT platform. IFTTT allows the user to setup a webhook that can be used to trigger processing on the platform. The webhook could be sending an IFTTT notification to a destination not support by any Fledge plugin to controlling a device that is controllable via IFTTT.

In order to use the IFTTT webhook you must obtain a key from IFTTT by visiting your IFTTT account

	Select the “My Applets” page from your account pull down menu

	[image: ifttt_1]

	Select “New Applet”

	Click on the blue “+ this” logo

	Choose the service Webhooks

	Click on the blue box “Receive a web request”

	Enter an “Event Name”, this may be of your choosing and will be put in the configuration entry ‘Trigger’ for the Fledge plugin

	Click on the “+ that” logo

	Select the action you wish to invoke

Once you have setup your webhook on IFTTT you can now proceed to setup the Fledge delivery notification plugin. Create you notification, choose and configure your notification rule. Select the IFTTT delivery plugin and click on Next. You will be presented with the IFTTT plugin configuration page.

	[image: ifttt_2]

There are two important items to be configured

	IFTTT Trigger: This is the Maker Event that you used in IFTTT when defining the action that the webhook should trigger.

	IFTTT Key: This is the webhook key you obtain from the IFTTT platform.

Enable the delivery and click on Next to move to the final stage of completing your notification.

 MQTT Notification

MQTT Notification

The fledge-notify-mqtt notification delivery plugin sends notifications via an MQTT broker. The MQTT topic and the payloads to send when the notificstion triggers or is cleared are configurable.

Once you have created your notification rule and move on to the delivery mechanism

	Select the mqtt plugin from the list of plugins

	Click Next

	[image: mqtt_1]

	Configure the plugin

	MQTT Broker: The URL of your MQTT broker.

	Topic: The MQTT topic on which to publish the messages.

	Trigger Payload: The payload to send when the notification triggers

	Clear Payload: The payload to send when the notification clears

	Enable the plugin and click Next

	Complete your notification setup

 Operation Notification

Operation Notification

The fledge-notify-operation notification delivery plugin is a mechanism by which a notification can be used to send a request to a south services to perform an operation.

Once you have created your notification rule and move on to the delivery mechanism

	Select the operation plugin from the list of plugins

	Click Next

	[image: setpoint_1]

	Configure the plugin

	Service: The name of the south service you wish to control

	Trigger Value: The operation payload to send to the south service when the rule triggers. This is the name of the operation to prform and a set of name, value pairs which are the optional parameters to pass that operations.

	Cleared Value: The operation payload to send to the south service when the rule clears. This is the name of the operation to prform and a set of name, value pairs which are the optional parameters to pass that operations.

	Enable the plugin and click Next

	Complete your notification setup

 Python 3 Script

Python 3 Script

The fledge-notify-python35 notification delivery plugin allows a user supplied Python script to be executed when a notification is triggered or cleared. The script should be written in Python 3 syntax.

A Python script should be provided in the form of a function, the name of that function should match the name of the file the code is loaded form. E.g if you have a script to run which you have saved in a file called alert_light.py it should contain a function alert_light. ~that function is called with a message which is defined in notification itself as a simple string.

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

Once you have created your notification rule and move on to the delivery mechanism

	Select the python35 plugin from the list of plugins

	Click Next

	[image: python_1]

	Configure the plugin

	Python Script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the plugin and click Next

	Complete your notification setup

Example Script

The following is an example script that flashes the LEDs on the Enviro pHAT board on a Raspberry Pi

from time import sleep
from envirophat import leds
def flash_leds(message):
 for count in range(4):
 leds.on()
 sleep(0.5)
 leds.off()
 sleep(0.5)

This code imports some Python libraries and then in a loop will turn the leds on and then off 4 times.

Note

This example will take 4 seconds to execute, unless multiple threads have been turned on for notification delivery this will block any other notifications from being delivered during that time.

 Set Point Control Notification

Set Point Control Notification

The fledge-notify-setpoint notification delivery plugin is a mechanism by which a notification can be used to send set point control writes into south services which support set point control

Once you have created your notification rule and move on to the delivery mechanism

	Select the setpoint plugin from the list of plugins

	Click Next

	[image: setpoint_1]

	Configure the plugin

	Service: The name of the south service you wish to control

	Trigger Value: The set point control payload to send to the south service. This is a list of name, value pairs to be set within the service. These are set when the notification rule triggers.

	Cleared Value: The set point control payload to send to the south service. This is a list of name, value pairs to be set within the service. There are set when the notification rule clears.

	Enable the plugin and click Next

	Complete your notification setup

Trigger Values

The Trigger Value and Cleared Value are JSON documents that are sent to the set point entry point of the south service. The format of these is a set of name and value pairs that represent the data to write via the south service. A simple example would be as below

{
 "values": {
 "temperature" : "11",
 "rate" : "245"
 }
}

In this example we are setting two variables in the south service, one named temperature and the other named rate. In this example the values are constants defined in the plugin configuration. It is possible however to use values that are in the data that triggered the notification.

As an example of this assume we are controlling the speed of a fan based on the temperature of an item of equipment. We have a south service that is reading the temperature of the equipment, let’s assume this is in an asset called equipment which has a data point called temperature. We add a filter using the fledge-filter-expression filter to calculate a desired fan speed. The expression we will use in this example is desiredSpeed = temperature * 100. This will case the asset to have a second data point called desiredSpeed.

We create a notification that is triggered if the desiredSpeed is greater than 0. The delivery mechanism will be this plugin, fledge-notify-setpoint. We want to set two values in the south plugin speed to set the speed of the fan and run which controls if the fan is on or off. We set the Trigger Value to the following

{
 "values" : {
 "speed" : "$equipment.desiredSpeed$",
 "run" : "1"
 }
 }

In this case the speed value will be substituted by the value of the desiredSpeed data point of the equipment asset that triggered the notification to be sent.

 Slack Messages

Slack Messages

The fledge-notify-slack delivery notification plugin allows notifications to be delivered as instant messages on the Slack messaging platform. The plugin uses a Slack webhook to post the message.

To obtain a webhook URL from Slack

	Visit the Slack API page

	Select Create New App

	Enter a name for your application, this must be unique for each Fledge slack application you create

	Select your Slack workspace in which to deliver your notification. If not already logged in you may need to login to your workspace

	Click on Create

	Select Incoming Webhooks

	Activate your webhook

	Add your webhook to the workspace

	Select the channel or individual to send the notification to

	Authorize your webhook

	Copy the Webhook URL which you will need when configuring the plugin

Once you have created your notification rule and move on to the delivery mechanism

	Select the slack plugin from the list of plugins

	Click Next

	[image: slack_1]

	Configure the delivery plugin

	Slack Webhook URL: Paste the URL you obtain above from the Slack API page

	Message Test: Static text that will appear in the slack message you receive when the rule triggers

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers you will receive messages in you Slack client on your desk top

	[image: slack_2]

and/or your mobile devices

	[image: slack_3]

 Telegram Messages

Telegram Messages

The fledge-notify-telegram delivery notification plugin allows notifications to be delivered as instant messages on the Telegram messaging platform. The plugin uses Telegram BOT API, to use this you must create a BOT and obtain a token.

[image: ../../_images/botfather.jpg]
To obtain a Telegram BOT token

	Use the Telegram application to send a message to botfather.

	In your message send the text /start

	Then send the message /newbot

	Follow the instructions to name your BOT

	Copy your BOT token.

You now need to get a chat id

	In the Telegram application send a message to you chat BOT

	Run the following command at the your shell command line or use a web browser to go to the URL https://api.telegram.org/bot<YourBOTToken>/getUpdates

wget https://api.telegram.org/bot<YourBOTToken>/getUpdates

Examine the contents of the getUpdates file or the output from the web browser

	Extract the id from the “chat” JSON object

{"ok":true,"result":[{"update_id":562812724, "message":{"message_id":1,"from":{"id":1166366214,"is_bot":false,"first_name":"Mark","last_name":"Riddoch"},
"chat":{"id":1166366214,"first_name":"Mark","last_name":"Riddoch","type":"private"},"date":1588328344,"text":"start","entities":[{"offset":0,"length":6,"type":"bot_command"}]}}},

Once you have created your notification rule and move on to the delivery mechanism

	Select the Telegram plugin from the list of plugins

	Click Next

	[image: telegram_1]

	Configure the delivery plugin

	Telegram BOT API token: Paste the API token you received from botfather

	Telegram user chat_id: Paste the id field form the chat

	Telegram BOT API url Prefix: This is the fixed part of the URL used to send messages and should not be modified under normal circumstances.

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers you will receive messages Telegram application

	[image: telegram_2]

 Developing Data Pipelines

Developing Data Pipelines

Fledge provides a system of data pipelines that allows data to flow from its point of ingest into the Fledge instance, the south plugin, to the storage layer in which it is buffered. The stages along this pipeline are Fledge processing filters, output of one filter becomes the input of the next. Fledge also supports pipelines on the egress as data flows from the storage layer to the north plugins and onward to the systems integrated upstream of the Fledge instance.

Operations in the south service are performed on the data from a single source, whilst operations in the north are performed on data going to a single destination. The filter pipeline in the north will have the data from sources flowing through the pipeline, this data will form a mixed stream that will contain all the data in date/time order.

	[image: pipelines]

Best Practices

It is possible with Fledge to support multiple data pipelines within a single Fledge instance, however if you have a well established Fledge instance with critical pipelines running on that instance it is perhaps not always the best practice to then develop a new, experimental pipeline on that same Fledge instance.

Looking first at south plugins; one reason for this is that data that enters the Fledge instance via your new pipeline will be sent to the storage system and then onward to the north destinations mixed with the data from other pipelines on your system. If your new pipeline is incorrect or generating poor data you are then left in a situation whereby that data has been sent to your existing upstream systems.

If it is unavoidable to use the same instance there are techniques that can be used to reduce the risk; namely to use an asset filter to block data from your new south pipeline entering your existing north pipelines and then being sent to your upstream systems. To do this you merely insert a filter at the start of each of your existing north pipelines and set it to exclude the named assets that will be ingested by your new, experimental pipeline. This will allow the data from the existing south service to still flow to the upstream systems, but prevent your new data from streaming out to these systems.

There are still risks associated with this approach, namely that the new service may produce assets of a different name to those you expect or may produce more assets that you expect. Data is still also sent to the notification service from your new pipeline, which may impact that service, although it is less likely than sending incorrect or unwanted data north. There is also the limitation that your new data will be discarded from the buffer and can not then be sent to the existing north pipelines if you subsequently decide the data is good. Data with your new asset names, from your new pipeline, will only be sent once you remove the asset filter from those pipelines in the north that send data to your upstream systems.

Developing new north pipelines is less risky, as the data that comes from the storage service and is destined for your new pipeline to upstream systems is effectively duplicated as it leaves the storage system. The main risk is that this new service will count as if the data has been sent up stream as far as the storage system is concerned and may make your data eligible for operation by the purge system sooner than would otherwise be the case. If you wish to prevent this you can update the purge configuration to insist the data is sent on all north channels before being considered sent for the purposes of the purge system. In most circumstances this is a precaution that can be ignored, however if you have configured your Fledge system for aggressive purging of data you may wish to consider this.

Incremental Development

The Fledge pipeline mechanism is designed for and lends itself to a modular development of the data processing requirement of your application. The pipeline is built from a collection of small, targeted filters that each perform a small, incremental process on the data. When building your pipelines, especially when using the filters that allow the application of scripts to the data, you should consider this approach and not build existing functionality that can be imported by applying an existing filter to the pipeline. Rather use that existing filter and add more steps to your pipeline, the Fledge environment is designed to provide minimal overhead when combining filters into a pipeline. Also the pipeline builder can make use of well used and tested filters, thus reducing the overheads to develop and test new functionality that is not needed.

This piecemeal approach can also be adopted in the process of building the pipeline, especially if you use the asset filter to block data from progressing further through the Fledge system once it has been buffered in the storage layer. Simply add your south service, bring the service up and observe the data that is buffered from the service. You can now add another filter to the pipeline and observe how this alters the data that is being buffered. Since you have a block on the data flowing further within your system, this data will disappear as part of the normal purging process and will not end up in upstream systems to the north of Fledge.

If you are developing on a standalone Fledge instance, with no existing north services, and you still set your experimental data to disappear, this can be achieved by use of the purge process. Simply configure the purge process to frequently purge data and set the process to purge unsent data. This will mean that the data will remain in the buffer for you to examine for a short time before it is purged from that buffer. Simply adjust the purge interval to allow you enough time to view the data in the buffer. Provided all the experimental data has been purged before you make your system go live, you will not be troubled with your experimental data being sent upstream.

Remember of course to reconfigure the purge process to be more inline with the duration you wish to keep the data for and to turn off the purging of unsent data unless you are willing to loose data that can not be sent for a period of time greater than the purge interval.

Configuring a more aggressive purge system, with the purging of unsent data, is probably not something you would wish to do on an existing system with live data pipelines and should not be used as a technique for developing new pipelines on such a system.

An alternative approach for removing data from the system is to enable the Developer Features in the Fledge User Interface. This can be done by selecting the Settings page in the left hand menu and clicking the option on the bottom of that screen.

	[image: developer_features]

Amongst the extra features introduced by selecting Developer Features will be the ability to manually purge data from the Fledge data store. This on-demand purging can be either applied to a single asset or to all assets within the data store. The manual purge operations are accessed via the Assets & Readings item in the Fledge menu. A number of new icons will appear when the Developer Features are turned on, one per asset and one that impacts all assets.

	[image: manual_purge]

[image: _images/eraser.jpg]
These icons are resemble erasers and are located in each row of the assets and also in the top right corner next to the help icon. Clicking on the eraser icon in each of the rows will purge the data for just that asset, leaving other assets untouched. Clicking on the icon in the top right corner will purge all the assets currently in the data store.

In both cases a confirmation dialog will be displayed to ensure against accidental use. If you choose to proceed the selected data within the Fledge buffer, either all or a specific asset, will be erased. There is no way to undo this operation or to retrieve the data once it has been purged.

Another consequence that may occur when developing new pipelines is that assets are created during the development process which are not required in the finished pipeline. The asset however remains associated with the service and the asset name and count of number of ingested readings will be displayed in the South Services page on the user interface.

	[image: deprecated_1]

It is possible to deprecate the relationship between the service and the asset name using the developer features of the user interface. To do this you must first enable Developer Features in the user interface settings page. Now when you view the South Services page you will see an eraser icon next to each asset listed for a service.

	[image: deprecated_2]

If you click on this icon you will be prompted to deprecate the relationship between the asset and the service. If you select Yes the relationship will be severed and the asset will no longer appear next to the service.

Deprecating the relationship will not remove the statistics for the asset, it will merely remove the relationship with the service and hence it will not be displayed against the service.

If an asset relationship is deprecated for an asset that is still in use, it will automatically be reinstated the next time a reading is ingested for that asset. Since the statistics were not deleted when the relationship was deprecated the previous readings will still in included in the statistics when the relationship is restored.

These Developer Features are designed to be of use when developing pipelines within Fledge, the functionality is not something that should be used in normal operation and the developer features should be turned off when pipelines are not being developed.

Sacrificial North System

Developing north pipelines in a piecemeal fashion can be more of an issue as you are unlikely to want to put poorly formatted data into your upstream systems. One approach to this is to have a sacrificial north system of some type that you can use to develop the pipeline and determine if you are performing the process you need to on that pipeline. This way it is unimportant if that system becomes polluted with data that is not in the form you require it. Ideally you would use a system of the same type to do your development and then switch to the production system when you are satisfied your pipeline is correct.

If this is not possible for some reason a second choice solution would be to use another Fledge instance as your test north system. Rather than configure the north plugin you ultimately wish to use you would install the north HTTP plugin and connect this to a second Fledge instance running an HTTP plugin. Your data would then be sent to your new Fledge instance where you can then examine the data to see what was sent by the first Fledge instance. You then build up your north pipeline on that first Fledge instance in the same way you did with your south pipeline. Once satisfied you will need to carefully recreate your north pipeline against the correct north plugin and the you may remove your experimental north pipeline and destroy your sacrificial Fledge instance that you used to buffer and view the data.

OMF Specific Considerations

Certain north plugins present specific problems to the incremental development approach as changing the format of data that is sent to them can cause them internal issues. The OMF plugin that is used to send data to the Aveva PI Server is one such plugin.

The problem with the PI Server is that it is designed to store data in fixed formats, therefore having data that is not of a consistent type, i.e. made up of the set of attributes, can cause issues. In a PI server each new data type becomes a new tag, this is not a problem if you are happy to use tag naming that is flexible. However if you require that you used fixed name tags within the PI Server, using the OMF Hints filter, this can be an issue for incremental development of your pipeline. Changing the properties of the tag will result in a new name being required for the tag.

The simplest approach is to do all the initial development without the fixed name and then do the name mapping as the final step in developing the pipeline. Although not ideal it gives a relatively simple approach to resolving the problem.

Should you subsequently need to reuse the tag names with different types it becomes necessary to clear the type definitions from the PI Server by removing the element templates, the elements themselves and the cache. The PI Web API will then need to be restarted and the Fledge north plugin removed and recreated.

Examining Data

The easiest way to examine your data you have ingested via your new south pipeline is by use of the Fledge GUI to examine the data that currently resides within the buffer. You can view the data either via the graph feature of the Assets & Readings page, which will show the time series data.

	[image: view_graph]

If you have data that is not timeseries by nature, such as string, you may use the tabular displayed to show you non timeseries data, images if there are any or the download of the data to a spreadsheet view. This later view will not contain any image data in the readings.

	[image: view_spreadsheet]

Examining Logs

It is important to view the logs for your service when building a pipeline, this is due to the Fledge goal that Fledge instances should run as unattended services and hence any errors or warnings generated are written to logs rather than to an interactive user session. The Fledge user interface does however provide a number of mechanisms for viewing the log data and filtering it to particular sources. You may view the log from the “System” item in the Log menu and then filter the source to your particular south or north service.

	[image: logview_1]

Alternatively if you display the north or south configuration page for your service you will find an icon in the bottom left of the screen that looks like a page of text with the corner folded over. Simply click on this icon and the log screen will be displayed and automatically filtered to view just the logs from the service whose configuration you were previously editing.

	[image: logview_2]

Log are displayed with the most recent entry first, with older entries shown as you move down the page. You may move to the next page to view older log entries. It is also possible to view different log severity; fatal, error, warning, info and debug. By default a service will not write info and debug messages to the log, it is possible to turn these levels on via the advanced configuration options of the service. This will then cause the log entries to be written, but before you can view them you must set the appropriate level of severity filtering and the user interface will filter out information and debug message by default.

It is important to turn the logging level back down to warning and above messages once you have finished your debugging session and failure to do this will cause excessive log entries to be written to the system log file.

Also note that the logs are written to the logging subsystem of the underlying Linux version, either syslog or the messages mechanism depending upon your Linux distribution. This means that these log files will be automatically rotated by the operating system mechanisms. This means the system will not, under normal circumstances, fill the storage subsystem. Older log files will be kept for a short time, but will be removed automatically after a few days. This should be borne in mind if you have information in the log that you wish to keep. Also the user interface will only allow you to view data in the most recent log file.

It is also possible to configure the syslog mechanism to write log files to non-standard files or remote machines. The Fledge mechanisms for viewing the system logs does require that the standard names for log files are used.

Enabling and Disabling Filters

It should be noted that each filter has an individual enable control, this has the advantage that is is easy to temporarily remove a filter from a pipeline during the development stage. However this does have the downside that it is easy to forget to enable a filter in the pipeline or accidentally add a filter in a disabled state.

Scripting Plugins

Where there is not an existing plugin that does what is required, either in a filter or in south plugins where the data payload of a protocol is highly variable, such as generic REST or MQTT plugins, Fledge offers the option of using a scripting language in order to extend the off the shelf plugin set.

This scripting is done via the Python scripting language, both Python 3 and Python 2 are supported by Fledge, however it is recommended that the Python 3 variant, fledge-filter-python35 be used by preference. The Python support allows external libraries to be used to extend the basic functionality of Python, however it should be noted currently that the Python libraries have to be manually installed on the Fledge host machine.

Scripting Guidelines

The user has the full range of Python functionality available to them within the script code they provides to this filter, however caution should be exercised as it is possible to adversely impact the functionality and performance of the Fledge system by misusing Python features to the detriment of Fledge’s own features.

The general principles behind all Fledge filters apply to the scripts included in these filters;

	Do not duplicate existing functionality provided by existing filters.

	Keep the operations small and focused. It is better to have multiple filters each with a specific purpose than to create large, complex Python scripts.

	Do not buffer large quantities of data, this will effect the footprint of the service and also slow the data pipeline.

Importing Python Packages

The user is free to import whatever packages they wish in a Python script, this includes the likes of the numpy packages and other that are limited to a single instance within a Python interpreter.

Do not import packages that you do not use or are not required. This adds an extra overhead to the filter and can impact the performance of Fledge. Only import packages you actually need.

Python does not provide a mechanism to remove a package that has previously been imported, therefore if you import a package in your script and then update your script to no longer import the package, the package will still be in memory from the previous import. This is because we reload updated scripts without closing down as restarting the Python interpreter. This is part of the sharing of the interpreter that is needed in order to allow packages such as numpy and scipy to be used. This can lead to misleading behavior as when the service gets restarted the package will not be loaded and the script may break because it makes use of the package still.

If you remove a package import form your script and you want to be completely satisfied that the script will still run without it, then you must restart the service in which you are using the plugin. This can be done by disabling and then re-enabling the service.

One of the Developer Features of the Fledge user interface allows the management of the installed Python Packages from within the user interface. This features is turned on via the Developer features toggle in the Settings page and will add a new menu item called Developer. Navigating to this page will give the the option of managing packages

	[image: pip_1]

Clicking on Manage packages link will display the current set of Python packages that are installed on the machine.

	[image: pip_2]

To add a new package click on the Add + link in the top right corner. This will display a screen that allows you to enter details of a Python package to install.

	[image: pip_3]

Enter package name and an optional package version and then click on the Install button to install a new package via pip3.

Use of Global Variables

You may use global variables within your script and these globals will retain their value between invocations of the of processing function. You may use global variables as a method to keep information between executions and perform such operations as trend analysis based on data seen in previous calls to the filter function.

All Python code within a single service shares the same Python interpreter and hence they also share the same set of global variables. This means you must be careful as to how you name global variables and also if you need to have multiple instances of the same filter in a single pipeline you must be aware that the global variables will be shared between them. If your filter uses global variables it is normally not recommended to have multiple instances of them in the same pipeline.

It is tempting to use this sharing of global variables as a method to share information between filters, this is not recommended as should not be used. There are several reasons for this

	It provides data coupling between filters, each filter should be independent of each other filter.

	One of the filters sharing global variables may be disabled by the user with unexpected consequences.

	Filter order may be changed, resulting in data that is expected by a later filter in the chain not being available.

	Intervening filters may add or remove readings resulting in the data in the global variables not referring to the same reading, or set of readings that it was intended to reference.

If you wish one filter to pass data onto a later filter in the pipeline this is best done by adding data to the reading, as an extra data point. This data point can then be removed by the later filter. An example of this is the way Fledge adds OMF Hints to readings that are processed and removed by the OMF north plugin.

For example let us assume we have calculated some value delta that we wish to pass to a later filter, we can add this as a data point to our reading which we will call _hintDelta.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 ...
 reading['_hintDelta'] = delta
 ...
 return readings

This is far better than using a global as it is attached to the reading to which it refers and will remain attached to that reading until it is removed. It also means that it is independent of the number of readings that are processed per call, and resilient to readings being added or removed from the stream.

The name chosen for this data point in the example above has no significance, however it is good practice to choose a name that is unlikely to occur in the data normally and portrays the usage or meaning of the data.

File IO Operations

It is possible to make use of file operations within a Python filter function, however it is not recommended for production use for the following reasons;

	Pipelines may be moved to other hosts where files may not be accessible.

	Permissions may change dependent upon how Fledge systems are deployed in the various different scenarios.

	Edge devices may also not have large, high performance storage available, resulting in performance issues for Fledge or failure due to lack of space.

	Fledge is designed to be managed solely via the Fledge API and applications that use the API. There is no facility within that API to manage arbitrary files within the filesystem.

It is common to make use of files during development of a script to write information to in order to aid development and debugging, however this should be removed, along with associated imports of packages required to perform the file IO, when a filter is put into production.

Threads within Python

It is tempting to use threads within Python to perform background activity or to allow processing of data sets in parallel, however there is an issue with threading in Python, the Python Global Interpreter Lock or GIL. The GIL prevents two Python statements from being executed within the same interpreter by two threads simultaneously. Because we use a single interpreter for all Python code running in each service within Fledge, if a Python thread is created that performs CPU intensive work within it, we block all other Python code from running within that Fledge service.

We therefore avoid using Python threads within Fledge as a means to run CPU intensive tasks, only using Python threads to perform IO intensive tasks, using the asyncio mechanism of Python 3.5.3 or later. In older versions of Fledge we used multiple interpreters, one per filter, in order to workaround this issue, however that had the side effect that a number of popular Python packages, such as numpy, pandas and scipy, could not be used as they can not support multiple interpreters within the same address space. It was decided that the need to use these packages was greater than the need to support multiple interpreters and hence we have a single interpreter per service in order to allow the use of these packages.

Interaction with External Systems

Interaction with external systems, using network connections or any form of blocking communication should be avoided in a filter. Any blocking operation will cause data to be blocked in the pipeline and risks either large queues of data accumulating in the case of asynchronous south plugins or data begin missed in the case of polled plugins.

Scripting Errors

If an error occurs in the plugin or Python script, including script coding errors and Python exception, details will be logged to the error log and data will not flow through the pipeline to the next filter or into the storage service.

Warnings raised will also be logged to the error log but will not cause data to cease flowing through the pipeline.

See Examining Logs: for details have how to access the system logs.

 Securing Fledge

Securing Fledge

The default installation of a Fledge service comes with security features turned off, there are several things that can be done to add security to Fledge. The REST API by default support unencrypted HTTP requests, it can be switched to require HTTPS to be used. The REST API and the GUI can be protected by requiring authentication to prevent users being able to change the configuration of the Fledge system. Authentication can be via username and password or by means of an authentication certificate.

Enabling HTTPS Encryption

Fledge can support both HTTP and HTTPS as the transport for the REST API used for management, to switch between there two transport protocols select the Configuration option from the left-hand menu and the select Admin API from the configuration tree that appears,

	[image: admin_api]

The first option you will see is a tick box labeled Enable HTTP, to select HTTPS as the protocol to use this tick box should be deselected.

	[image: enable_https]

When this is unticked two options become active on the page, HTTPS Port and Certificate Name. The HTTPS Port is the port that Fledge will listen on for HTTPS requests, the default for this is port 1995.

The Certificate Name is the name of the certificate that will be used for encryption. The default s to use a self signed certificate called fledge that is created as part of the installation process. This certificate is unique per fledge installation but is not signed by a certificate authority. If you require the extra security of using a signed certificate you may use the Fledge Certificate Store functionality to upload a certificate that has been created and signed by a certificate authority.

After enabling HTTPS and selecting save you must restart Fledge in order for the change to take effect. You must also update the connection setting in the GUI to use the HTTPS transport and the correct port.

Note: if using the default self-signed certificate you might need to authorise the browser to connect to IP:PORT.
Just open a new browser tab and type the URL https://YOUR_FLEDGE_IP:1995

Then follow browser instruction in order to allow the connection and close the tab.
In the Fledge GUI you should see the green icon (Fledge is running).

	[image: connection_https]

Requiring User Login

In order to set the REST API and GUI to force users to login before accessing Fledge select the Configuration option from the left-hand menu and then select Admin API from the configuration tree that appears.

	[image: admin_api]

Two particular items are of interest in this configuration category that is then displayed; Authentication and Authentication method

	[image: auth_options]

Select the Authentication field to be mandatory and the Authentication method to be password. Click on Save at the bottom of the dialog.

In order for the changes to take effect Fledge must be restarted, this can be done in the GUI by selecting the restart item in the top status bar of Fledge. Confirm the restart of Fledge and wait for it to be restarted.

Once restarted refresh your browser page. You should be presented with a login request.

	[image: login]

The default username is “admin” with a password of “fledge”. Use these to login to Fledge, you should be presented with a slightly changed dashboard view.

	[image: login_dashboard]

The status bar now contains the name of the user that is currently logged in and a new option has appeared in the left-hand menu, User Management.

Changing Your Password

The top status bar of the Fledge GUI now contains the user name on the right-hand side and a pull down arrow, selecting this arrow gives a number of options including one labeled Profile.

	[image: user_pulldown]

Note

This pulldown menu is also where the Shutdown and Restart options have moved.

Selecting the Profile option will display the profile for the user.

	[image: profile]

Towards the bottom of this profile display the change password option appears. Click on this text and a new password dialog will appear.

	[image: password]

This popup can be used to change your password. On successfully changing your password you will be logged out of the user interface and will be required to log back in using this new password.

Password Rotation Mechanism

Fledge provides a mechanism to limit the age of passwords in use within the system. A value for the maximum allowed age of a password is defined in the configuration page of the user interface.

	[image: password_rotation]

Whenever a user logs into Fledge the age of their password is checked against the maximum allowed password age. If their password has reached that age then the user is not logged in, but is instead forced to enter a new password. They must then login with that new password. In addition the system maintains a history of the last three passwords the user has used and prevents them being reused.

User Management

Once mandatory authentication has been enabled and the currently logged in user has the role admin, a new option appears in the GUI, User Management.

	[image: user_management]

The user management pages allows

	Adding new users.

	Deleting users.

	Resetting user passwords.

	Changing the role of a user.

Fledge currently supports two roles for users,

	admin: a user with admin role is able to fully configure Fledge and also manage Fledge users

	user: a user with this role is able to configure Fledge but can not manage users

Adding Users

To add a new user from the User Management page select the Add User icon in the top right of the User Management pane. a new dialog will appear that will allow you to enter details of that user.

	[image: add_user]

You can select a role for the new user, a user name and an initial password for the user. Only users with the role admin can add new users.

Changing User Roles

The role that a particular user has when the login can be changed from the User Management page. Simply select on the change role link next to the user you wish to change the role of.

	[image: change_role]

Select the new role for the user from the drop down list and click on update. The new role will take effect the next time the user logs in.

Reset User Password

Users with the admin role may reset the password of other users. In the User Management page select the reset password link to the right of the user name of the user you wish to reset the password of. A new dialog will appear prompting for a new password to be created for the user.

	[image: reset_password]

Enter the new password and confirm that password by entering it a second time and click on Update.

Delete A User

Users may be deleted from the User Management page. Select the delete link to the right of the user you wish to delete. A confirmation dialog will appear. Select Delete and the user will be deleted.

	[image: delete_user]

You can not delete the last user with role admin as this will prevent you from being able to manage Fledge.

Certificate Store

The Fledge Certificate Store allows certificates to be stored that may be referenced by various components within the system, in particular these certificates are used for the encryption of the REST API traffic and authentication. They may also be used by particular plugins that require a certificate of one type or another. A number of different certificate types re supported by the certificate store;

	PEM files as created by most certificate authorities

	CRT files as used by GlobalSign, VeriSign and Thawte

	Binary CER X.509 certificates

	JSON certificates as used by Google Cloud Platform

The Certificate Store functionality is available in the left-hand menu by selecting Certificate Store. When selected it will show the current content of the store.

	[image: certificate_store]

Certificates may be removed by selecting the delete option next to the certificate name, note that the keys and certificates can be deleted independently.
The self signed certificate that is created at installation time can not be deleted.

To add a new certificate select the Import icon in the top right of the certificate store display.

	[image: update_certificate]

A dialog will appear that allows a key file and/or a certificate file to be selected and uploaded to the Certificate Store. An option allows to allow overwrite of an existing certificate. By default certificates may not be overwritten.

 Tuning Fledge

Tuning Fledge

Many factors will impact the performance of a Fledge system

	The CPU, memory and storage performance of the underlying hardware

	The communication channel performance to the sensors

	The communications to the north systems

	The choice of storage system

	The external demands via the public REST API

Many of these are outside of the control of Fledge itself, however it is possible to tune the way Fledge will use certain resources to achieve better performance within the constraints of a deployment environment.

South Service Advanced Configuration

The south services within Fledge each have a set of advanced configuration options defined for them. These are accessed by editing the configuration of the south service itself. A screen with a set of tabbed panes will appear, select the tab labeled Advanced Configuration to view and edit the advanced configuration options.

	[image: south_advanced]

	Maximum Reading Latency (mS) - This is the maximum period of time for which a south service will buffer a reading before sending it onward to the storage layer. The value is expressed in milliseconds and it effectively defines the maximum time you can expect to wait before being able to view the data ingested by this south service.

	Maximum buffered Readings - This is the maximum number of readings the south service will buffer before attempting to send those readings onward to the storage service. This and the setting above work together to define the buffering strategy of the south service.

	Reading Rate - The rate at which polling occurs for this south service. This parameter only has effect if your south plugin is polled, asynchronous south services do not use this parameter. The units are defined by the setting of the Reading Rate Per item.

	Throttle - If enabled this allows the reading rate to be throttled by the south service. The service will attempt to poll at the rate defined by Reading Rate, however if this is not possible, because the readings are being forwarded out of the south service at a lower rate, the reading rate will be reduced to prevent the buffering in the south service from becoming overrun.

	Reading Rate Per - This defines the units to be used in the Reading Rate value. It allows the selection of per second, minute or hour.

	Minimum Log Level - This configuration option can be used to set the logs that will be seen for this service. It defines the level of logging that is send to the syslog and may be set to error, warning, info or debug. Logs of the level selected and higher will be sent to the syslog. You may access the contents of these logs by selecting the log icon in the bottom left of this screen.

Tuning Buffer Usage

The tuning of the south service allows the way the buffering is used within the south service to be controlled. Setting the latency value low results in frequent calls to send data to the storage service and therefore means data is more quickly available. However sending small quantities of data in each call the the storage system does not result in the most optimal use of the communications or of the storage engine itself. Setting a higher latency value results in more data being sent per transaction with the storage system and a more efficient system. The cost of this is the requirement for more in-memory storage within the south service.

Setting the Maximum buffers Readings value allows the user to place a cap on the amount of memory used to buffer within the south service, since when this value is reach, regardless of the age of the data and the setting of the latency parameter, the data will be sent to the storage service. Setting this to a smaller value allows tighter control on the memory footprint at the cost of less efficient use of the communication and storage service.

Tuning between performance, latency and memory usage is always a balancing act, there are situations where the performance requirements mean that a high latency will need to be incurred in order to make the most efficient use of the communications between the micro services and the transnational performance of the storage engine. Likewise the memory resources available for buffering may restrict the performance obtainable.

North Advanced Configuration

In a similar way to the south services, north services and tasks also have advanced configuration that can be used to tune the operation of the north side of Fledge. The north advanced configuration is accessed in much the same way as the south, select the North page and open the particular north service or task. A tabbed screen will be shown which contains an Advanced Configuration tab.

	[image: north_advanced]

	Minimum Log Level - This configuration option can be used to set the logs that will be seen for this service or task. It defines the level of logging that is send to the syslog and may be set to error, warning, info or debug. Logs of the level selected and higher will be sent to the syslog. You may access the contents of these logs by selecting the log icon in the bottom left of this screen.

	Data block size - This defines the number of readings that will be sent to the north plugin for each call to the plugin_send entry point. This allows the performance of the north data pipeline to be adjusted, with larger blocks sizes increasing the performance, by reducing overhead, but at the cost of requiring more memory in the north service or task to buffer the data as it flows through the pipeline. Setting this value too high may cause issues for certain of the north plugins that have limitations on the number of messages they can handle within a single block.

Health Monitoring

The Fledge core monitors the health of other services within Fledge, this is done with the Service Monitor within Fledge and can be configured via the Configuration menu item in the Fledge user interface. In the configuration page select the Advanced options and then the Service Monitor section.

	[image: service_monitor]

	Health Check Interval - This setting determines how often Fledge will send a health check request to each of the microservices within the Fledge instance. The value is expressed in seconds. Making this value small will decrease the amount of time it will take to detect a failure, but will increase the load on the system for performing health checks. Making this too frequent is likely to increase the occurrence of false failure detection.

	Ping Timeout - Amount of time to wait, in seconds, before declaring that a health check request has failed. Failure for a health check response to be seen within this time will make a service as unresponsive. Small values can result in busy services becoming suspect erroneously.

	Max Attempts To Check Heartbeat - This is the number of heartbeat requests that must fail before the core determines that the service has failed and attempts any restorative action. Reducing this value will cause the service to be declared as failed sooner and hence recovery can be performed sooner. If this value is too small then it can result in multiple instances of a service running or frequent restarts occurring. Making this too long results in loss of data.

	Restart Failed - Determine what action should be taken when a service is detected as failed. Two options are available, Manual, in which case not automatic action will be taken, or Auto, in which case the service will be automatically restarted.

Scheduler

The Fledge core contains a scheduler that is used for running periodic tasks, this scheduler has a couple of tuning parameters. To access these parameters from the Fledge User Interface, in the configuration page select the Advanced options and then the Scheduler section.

	[image: scheduler_advanced]

	Max Running Tasks - Specifies the maximum number of tasks that can be running at any one time. This parameter is designed to stop runaway tasks adversely impacting the performance of the system. When this number is reached no new tasks will be created until one or more of the currently running tasks terminated. Set this too low and you will not be able to run all the task you require in parallel. Set it too high and the system is more at risk from runaway tasks.

	Max Age of Task - Specifies, in days, how long a task can run for. Tasks that run longer than this will be killed by the system.

Note

Individual tasks have a setting that they may use to stop multiple instances of the same task running in parallel. This also helps protect the system from runaway tasks.

Storage

The storage layer is perhaps one of the areas that most impacts the overall performance of the Fledge instance as it is the end point for the data pipelines; the location at which all ingest pipelines in the south terminate and the point of origin for all north pipelines to external systems.

The storage system in Fledge serves two purposes

	The storage of configuration and persistent state of Fledge itself

	The buffering of reading data as it traverses the Fledge instance

The physical storage is managed by plugins that are loaded dynamically into the storage service in the same way as with other services in Fledge. In the case of the storage service it may have either one or two plugins loaded. If a single plugin is loaded this will be used for the storage of both configuration and readings; if two plugins are loaded then one will be used for storing the configuration and the other for storing the readings. Not all plugins support both classes of data.

Choosing A Storage Plugin

Fledge comes with a number of storage plugins that may be used, each one has it benefits and limitations, below is an overview of each of the plugins that are currently included with Fledge.

	sqlite
	The default storage plugin that is used. It is implemented using the SQLite database and is capable of storing both configuration and reading data. It is optimized to allow parallelism when multiple assets are being ingested into the Fledge instance. It does however have limitations on the number of different assets that can be ingested within an instance. The precise limit is dependent upon a number of other factors, but is of the order of 900 unique asset names per instance. This is a good general purpose storage plugin and can manage reasonably high rates of data reading.

	sqlitelb
	This is another SQLite based plugin able to store both readings and configuration data. It is designed for lower bandwidth data, hence the name suffix lb. It does not have the same parallelism optimization as the default sqlite plugin, and is therefore less good when high rate data spread across multiple assets is being ingested. However it does perform well when ingesting high rates of a single asset or low rates of a very large number of assets. It does not have any limitations on the number of different assets that can be stored within the Fledge instance.

	sqlitememory
	This is a SQLite based plugin that uses in memory tables and can only be used to store reading data, it must be used in conjunction with another plugin that will be used to store the configuration. Reading data is stored in tables in memory and thus very high bandwidth data can be supported. If Fledge is shutdown however the data stored in these tables will be lost.

	postgres
	This plugin is implemented using the PostgreSQL database and supports the storage of both configuration and reading data. It uses the standard Postgres storage engine and benefits from the additional features of Postgres for security and replication. It is capable of high levels of concurrency however has slightly less overall performance than the sqlite plugins. Postgres also does not work well with certain types of storage media, such as SD cards as it has a higher ware rate on the media.

In most cases the default sqlite storage plugin is perfectly acceptable, however if very high data rates, or huge volumes of data (i.e. large images at a reasonably high rate) are ingested this plugin can start to exhibit issues. This usually exhibits itself by large queues building in the south service or in extreme cases by transaction failure messages in the log for the storage service. If this happens then the recommended course of action is to either switch to a plugin that stores data in memory rather than on external storage, sqlitememory, or investigate the media where the data is stored. Low performance storage will adversely impact the sqlite plugin.

The sqlite plugin may also prove less than optimal if you are ingested many hundreds of different assets in the same Fledge instance. The sqlite plugin has been optimized to allow concurrent south services to write to the storage in parallel. This is done by the use of multiple databases to improve the concurrency, however there is a limit, imposed by the number of open databases that can be supported. If this limit is exceeded it is recommend to switch to the sqlitelb plugin. There are configuration options regarding how these databases are used that can change the point at which it becomes necessary to switch to the other plugin.

Configuring Storage Plugins

The storage plugins to use can be selected in the Advanced section of the Configuration page. Select the Storage category from the category tree display and the following will be displayed.

	[image: storage_config]

	Storage Plugin: The name of the storage plugin to use. This will be used to store the configuration data and must be one of the supported storage plugins.

Note

This can not be the sqlitememory plugin as that plugin does not support the storage of configuration.

	Reading Plugin: The name of the storage plugin that will be used to store the readings data. If left blank then the Storage Plugin above will be used to store both configuration and readings.

	Database threads: Increase the number of threads used within the storage service to manage the database activity. This is not the number of threads that can be used to read or write the database and increasing this will not improve the throughput of the data.

	Manage Storage: This is used when an external storage application, such as the Postgres database is used that requires separate initialization. If this external process is not run by default setting this to true will cause Fledge to start the storage process. Normally this is not required as Postgres should be run as a system service and SQLite does not require it.

	Service Port: Normally the storage service will dynamically create a service port that will be used by the storage service. Setting this to a value other than 0 will cause a fixed port to be used. This can be useful when developing a new storage plugin or to allow access to a non-fledge application to the storage layer. This should only be changed with extreme caution.

	Management Port: Normally the storage service will dynamically create a management port that will be used by the storage service. Setting this to a value other than 0 will cause a fixed port to be used. This can be useful when developing a new storage plugin.

Changing will be saved once the save button is pressed. Fledge uses a mechanism whereby this data is not only saved in the configuration database, but also cached to a file called storage.json in the etc directory of the data directory. This is required such that Fledge can find the configuration database during the boot process. If the configuration becomes corrupt for some reason simply removing this file and restarting Fledge will cause the default configuration to be restored. The location of the Fledge data directory will depend upon how you installed Fledge and the environment variables used to run Fledge.

	Installation from a package will usually put the data directory in /usr/local/fledge/data. However this can be overridden by setting the $FLEDGE_DATA environment variable to point at a different location.

	When running a copy of Fledge built from source the data directory can be found in ${FLEDGE_ROOT}/data. Again this may be overridden by setting the $FLEDGE_DATA environment variable.

Note

When changing the storage service a reboot of the Fledge instance is required before the new storage plugins will be used. Also, data is not migrated from one plugin to another and hence if there is unsent data within the database this will be lost when changing the storage plugin. The sqlite and sqlitelb plugin however share the same configuration data tables and hence configuration will be preserved when changing between these databases but reading data will not.

sqlite Plugin Configuration

The storage plugin configuration can be found in the Advanced section of the Configuration page. Select the Storage category from the category tree display and the plugin name from beneath that category. In the case of the sqlite storage plugin the following will be displayed.

	[image: sqlite_config]

	Pool Size: The storage service uses a connection pool to communicate with the underlying database, it is this pool size that determines how many parallel operations can be invoked on the database.

This pool size is only the initial size, the storage service will grow the pool if required, however setting a realistic initial pool size will improve the ramp up performance of Fledge.

Note

Although the pool size denotes the number of parallel operations that can take place, database locking considerations may reduce the number of actual operations in progress at any point in time.

	No. Readings per database: The sqlite plugin support multiple readings databases, with the name of the asset used to determine which database to store the readings in. This improves the level of parallelism by reducing the lock contention when data is being written. Setting this value to 1 will cause only a single asset name to be stored within a single readings database, resulting in no contention between assets. However there is a limit on the number of databases, therefore setting this to 1 will limit the number of different assets that can be ingested into the instance.

	No. databases to allocate in advance: This controls how many reading databases Fledge should initially created. Creating databases is a slow process and thus is best achieved before data starts to flow through Fledge. Setting this too high will cause Fledge to allocate a large number of databases than required and waste open database connections. Ideally set this to the number of different assets you expect to ingest divided by the number of readings per database configuration above. This should give you sufficient databases to store the data you require.

	Database allocation threshold: The allocation of a new database is a slow process, therefore rather than wait until there are no available databases before allocating new ones, it is possible to pre-allocate database as the number of free databases becomes low. This value allows you to set the point at which to allocation more databases. As soon as the number of free databases declines to this value the plugin will allocate more databases.

	Database allocation size: The number of new databases to create whenever an allocation occurs. This effectively denotes the size of the free pool of databases that should be created.

	Purge Exclusion: This is not a performance settings, but allows a number of assets to be exempted from the purge process. This value is a comma separated list of asset names that will be excluded from the purge operation.

sqlitelb Configuration

The storage plugin configuration can be found in the Advanced section of the Configuration page. Select the Storage category from the category tree display and the plugin name from beneath that category. In the case of the sqlitelb storage plugin the following will be displayed.

	[image: sqlitelb_config]

Note

The sqlite configuration is still present and selectable since this instance has run that storage plugin in the past and the configuration is preserved when switching between sqlite and sqlitelb plugins.

	Pool Size: The storage service uses a connection pool to communicate with the underlying database, it is this pool size that determines how many parallel operations can be invoked on the database.

This pool size is only the initial size, the storage service will grow the pool if required, however setting a realistic initial pool size will improve the ramp up performance of Fledge.

Note

Although the pool size denotes the number of parallel operations that can take place, database locking considerations may reduce the number of actual operations in progress at any point in time.

postgres Configuration

The storage plugin configuration can be found in the Advanced section of the Configuration page. Select the Storage category from the category tree display and the plugin name from beneath that category. In the case of the postgres storage plugin the following will be displayed.

	[image: postgres_config]

	Pool Size: The storage service uses a connection pool to communicate with the underlying database, it is this pool size that determines how many parallel operations can be invoked on the database.

This pool size is only the initial size, the storage service will grow the pool if required, however setting a realistic initial pool size will improve the ramp up performance of Fledge.

Note

Although the pool size denotes the number of parallel operations that can take place, database locking considerations may reduce the number of actual operations in progress at any point in time.

sqlitememory Configuration

The storage plugin configuration can be found in the Advanced section of the Configuration page. Select the Storage category from the category tree display and the plugin name from beneath that category. Since this plugin only supports the storage of readings there will always be at least one other reading plugin displayed. Selecting the sqlitememory storage plugin the following will be displayed.

	[image: sqlitememory_config]

	Pool Size: The storage service uses a connection pool to communicate with the underlying database, it is this pool size that determines how many parallel operations can be invoked on the database.

This pool size is only the initial size, the storage service will grow the pool if required, however setting a realistic initial pool size will improve the ramp up performance of Fledge.

Note

Although the pool size denotes the number of parallel operations that can take place, database locking considerations may reduce the number of actual operations in progress at any point in time.

 Troubleshooting the PI Server integration

Troubleshooting the PI Server integration

This section describes how to troubleshoot issues with the PI Server integration
using Fledge version >= 1.9.1 and PI Web API 2019 SP1 1.13.0.6518

	Log files

	How to check the PI Web API is installed and running

	Commands to check the PI Web API

	Error messages and causes

	Possible solutions to common problems

Log files

Fledge logs messages at error and warning levels by default, it is possible to increase the verbosity of messages logged to include information and debug messages also. This is done by altering the minimum log level setting for the north service or task. To change the minimal log level within the graphical user interface select the north service or task, click on the advanced settings link and then select a new minimal log level from the option list presented.
The name of the north instance should be used to extract just the logs about the PI Server integration, as in this example:

screenshot from the Fledge GUI

[image: img_003]

$ sudo cat /var/log/syslog | grep North_Readings_to_PI

Sample message:

user.info, 6,1,Mar 15 08:29:57,localhost,Fledge, North_Readings_to_PI[15506]: INFO: SendingProcess is starting

Another sample message:

North_Readings_to_PI[20884]: WARNING: Error in retrieving the PIWebAPI version, The PI Web API server is not reachable, verify the network reachability

How to check the PI Web API is installed and running

Open the URL https://piserver_1/piwebapi in the browser, substituting piserver_1 with the name/address of your PI Server, to
verify the reachability and proper installation of PI Web API.
If PI Web API is configured for Basic authentication a prompt, similar to the one shown below, requesting entry of the user name and password will be displayed

[image: img_002]

NOTE:

	Enter the user name and password which you set in your Fledge configuration.

The PI Web API OMF plugin must be installed to allow the integration with Fledge, in this screenshot the 4th row shows the
proper installation of the plugin:

[image: img_001]

Select the item System to verify the installed version:

[image: img_010]

Commands to check the PI WEB API

Open the PI Web API URL and drill drown into the Data Archive and the Asset Framework hierarchies to verify the proper configuration on the PI Server side. Also confirm that the correct permissions have be granted to access these hierarchies.

Data Archive drill down

Following the path DataServers -> Points:

[image: img_004]

[image: img_005]

You should be able to browse the PI Points page and see your PI Points if some data was already sent:

[image: img_006]

Asset Framework drill down

Following the path AssetServers -> Select the Instance -> Select the proper Databases -> drill down into the AF hierarchy up to the required level -> Elements:

[image: img_007]

selecting the instance

[image: img_008]

selecting the database

[image: img_009]

Proceed with the drill down operation up to the desired level/asset.

Error messages and causes

Some error messages and causes:

	Message

	Cause

	North_Readings_to_PI[20884]: WARNING: Error in retrieving the PIWebAPI version, The PI Web API server is not reachable, verify the network reachability

	Fledge is not able to reach the machine in which PI Server is running due to a network problem or a firewall restriction.

	North_Readings_to_PI[5838]: WARNING: Error in retrieving the PIWebAPI version, 503 Service Unavailable

	Fledge is able to reach the machine in which PI Server is executing but the PI Web API is not running.

	North_Readings_to_PI[24485]: ERROR: Sending JSON data error : Container not found. 4273005507977094880_1measurement_sin_4816_asset_1 - WIN-4M7ODKB0RH2:443 /piwebapi/omf

	Fledge is able to interact with PI Web API but there is an attempt to store data in a PI Point that does not exist.

OMF Plugin Data

The OMF north plugin must create type information within the OMF subsystem of the PI Server before any data can be sent. This type information is persisted within the PI Server between sessions and must also be persisted within Fledge for each connection to a PI Server. This is done using the plugin data persistence features of the Fledge north plugin.

This results in an important connection between a north service or task and a PI Server, which does add extra constraints as to what may be done at each end. It is very important this data is kept synchronized between the two ends. In normal circumstances this is not a problem, but there are some actions that can cause problems and require action on both ends.

	Delete a north service or task using the OMF plugin
	If a north service or task using the OMF plugin is deleted then the persisted data of the plugin is also lost. This is Fledge’s record of what types have been created in the PI Server and is no longer synchronized following the deletion of the north service. Any new service or task that is created and connected to the same PI Server will receive duplicate type errors from the PI Server. There are two possible solutions to this problem;

	Remove the type data from the PI Server such that neither end has the type information.

	Before deleting the north service or task export the plugin persisted data and import that data into the new service or task.

	Cleanup a PI Server and reuse and existing OMF North service or task
	This is the opposite problem to that stated above, the plugin will try to send data thinking that the types have already been created in the PI Server and receive an error. Fledge will automatically correct for this and create new types. These new types however will be created with new names, which may not be the desired behavior. Type names are created using a fixed algorithm. To re-use the previous names, stopping the north service and deleting the plugin persisted data will reset the algorithm and recreate the types using the names that had been previously used.

	Taking an existing Fledge north task or service and moving it to a new PI Server
	This new PI Server will not have the type information from the old and we will once again get errors when sending data due to these missing types. Fledge will automatically correct for this and create new types. These new types however will be created with new names, which may not be the desired behavior. Type names are created using a fixed algorithm. To re-use the previous names, stopping, the north service and deleting the plugin persisted data will reset the algorithm and recreate the types using the names that had been previously used.

Managing Plugin Persisted Data

This is not a feature that users would ordinarily need to be concerned with, however it is possible to enable Developer Features in the Fledge User Interface that will provide a mechanism to manage this data.

Enable Develop Features

Navigate to the Settings page of the GUI and toggle on the Developer Features check box on the bottom left of the page.

Viewing Persisted Data

In order to view the persisted data for the plugins of a service open either the North or South page on the user interface and select your service or task. An page will open that allows you to update the configuration of the plugin. This contains a set of tabs that may be selected, when Developer Features are enabled one of these tabs will be labeled Developer.

	[image: OMF_tabs]

The Developer tab will allow the viewing of the persisted data for all of the plugins in that service, filters and either north or south plugins, for which data is persisted.

Persisted data is only written when a plugin is shutdown, therefore in order to get the most up to date view of the data it is recommended that service is disabled before viewing the persisted data. It is possible to view the persisted data of a running service, however this will be a snapshot taken from the last time the service was shutdown.

	[image: OMF_Persisted]

It is possible for more than one plugin within a pipeline to persist data, in order to select between the plugins that have persisted data a menu is provided in the top left which will list all those plugins for which data can be viewed.

	[image: PersistedPlugins]

As well as viewing the persisted data it is also possible to perform other actions, such as Delete, Export and Import. These actions are available via a menu that appears in the top right of the screen.

	[image: PersistedActions]

Note

The service must be disabled before use of the Delete or Import features and to get the latest values when performing an Export.

Understanding The OMF Persisted Data

The persisted data takes the form of a JSON document, the following is an example for a Fledge instance configured with just the Sinusoid plugin.

{
 "sentDataTypes": [
 {
 "sinusoid": {
 "type-id": 1,
 "dataTypesShort": "0x101",
 "hintChecksum": "0x0",
 "namingScheme": 0,
 "afhHash": "15489826335467873671",
 "afHierarchy": "fledge/data_piwebapi/mark",
 "afHierarchyOrig": "fledge/data_piwebapi/mark",
 "dataTypes": {
 "sinusoid": {
 "type": "number",
 "format": "float64"
 }
 }
 }
 }
]
}

The SentDataTypes is a JSON array of object, with each object representing one data type that has been sent to the PI Server. The key/value pairs within the object are as follow

	Key

	Description

	type-id

	An index of the different types sent for this asset. Each time a new type is sent to the
PI Server for this asset this index will be incremented.

	dataTypesShort

	A summary of the types in the datatypes of the asset. The value is an encoded number that
contains the count of each of base types, integer, float and string, in the datapoints of
this asset.

	hintChecksum

	A checksum of the OMFHints used to create this type. 0 if no OMF Hint was used.

	namingScheme

	The current OMF naming scheme when the type was sent.

	afhHash

	A Hash of the AF settings for the type.

	afHierarchy

	The AF Hierarchy location.

	afHierarchyOrig

	The original setting of AF Hierarchy. This may differ from the above if specific AF rules
are in place.

	dataTypes

	The data type sent to the PI Server. This is an actually OMF type definition and is the
exact type definition sent to the PI Web API endpoint.

Possible solutions to common problems

	Recreate a single or a sets of PI Server objects and resend all the data for them to the PI Server on the Asset Framework hierarchy level
	
	procedure:
	
	disable the 1st north instance

	delete the objects in the PI Server, AF + Data archive, that are to be recreated or were partially sent.

	create a new DISABLED north instance using a new, unique name and having the same AF hierarchy as the 1st north instance

	install fledge-filter-asset on the new north instance

	configure fledge-filter-asset with a rule like the following one

{
 "rules": [
 {
 "asset_name": "asset_4",
 "action": "include"
 }
],
 "defaultAction": "exclude"
}

	enable the 2nd north instance

	let the 2nd north instance send the desired amount of data and then disable it

	enable the 1st north instance

	note:
	
	the 2nd north instance will be used only to recreate the objects and resend the data

	the 2nd north instance will resend all the data available for the specified included assets

	there will some data duplicated for the recreated assets because part of the information will be managed by both the north instances

	Recreate all the PI Server objects and resend all the data to the PI Server on a different Asset Framework hierarchy level
	
	procedure:
	
	disable the 1st north instance

	create a new north instance using a new, unique name and having a new AF hierarchy (North option ‘Asset Framework hierarchies tree’)

	note:
	
	this solution will create a set of new objects unrelated to the previous ones

	all the data stored in Fledge will be sent

	Recreate all the PI Server objects and resend all the data to the PI Server on the same Asset Framework hierarchy level of the 1st North instance WITH data duplication
	
	procedure:
	
	disable the 1st north instance

	delete properly the objects on the PI Server, AF + Data archive, that were eventually partially deleted

	stop / start PI Web API

	create a new north instance 2nd using the same AF hierarchy (North option ‘Asset Framework hierarchies tree)

	note:
	
	all the types will be recreated on the PI Server. If the structure of each asset, number and types of the properties, does not change the data will be accepted and laced into the PI Server without any error. PI Web API 2019 SP1 1.13.0.6518 will accept the data.

	Using PI Web API 2019 SP1 1.13.0.6518 the PI Server creates objects with the compression feature disabled. This will cause any data that was previously loaded and is still present in the Data Archive, to be duplicated.

	Recreate all the PI Server objects and resend all the data to the PI Server on the same Asset Framework hierarchy level of the 1st North instance WITHOUT data duplication
	
	procedure:
	
	disable the 1st north instance

	delete all the objects on the PI Server side, both in the AF and in the Data Archive, sent by the 1st north instance

	stop / start PI Web API

	create a new north instance using the same AF hierarchy (North option ‘Asset Framework hierarchies’ tree)

	note:
	
	all the data stored in Fledge will be sent

 Plugin Developer Guide

Plugin Developer Guide

	Source Code Documentation

	Plugins
	Plugins in this version of Fledge

	Installing New Plugins

	Representing Data

	Writing and Using Plugins
	Common Fledge Plugin API
	Plugin Information

	Plugin Initialization

	Plugin Shutdown

	Plugin Reconfigure

	Configuration Lifecycle
	Discovery

	South Plugins
	Polled Mode
	Plugin Poll

	Async IO Mode
	Plugin Start

	Async Data Callback

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In Python: the DHT11 Sensor
	The Hardware

	The Software

	The Plugin

	Building Fledge and Adding the Plugin

	Using the Plugin

	South Plugins in C
	Polled Mode
	Plugin Poll

	Plugin Poll Returning Multiple Values

	Async IO Mode
	Plugin Register Ingest

	Plugin Start

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In C/C++: the DHT11 Sensor
	The Software

	The Plugin

	Building Fledge and Adding the Plugin

	C++ Support Classes
	Reading

	Configuration Category

	Logger

	Hybrid Plugins

	North Plugins
	Python Plugins
	The plugin_info call
	Configuration

	The plugin_init call

	The plugin_send call

	The plugin_shutdown call

	Reconfiguration

	Payload Handling

	C/C++ Plugins
	The plugin_info entry point

	The plugin_init entry point

	The plugin_send entry point

	The plugin_shutdown entry point

	The plugin_register entry point

	Set Point Control

	Storage Plugins
	Data and Metadata

	Common Elements for Storage Plugins

	Filter Plugins
	Configuration

	C++ Filter Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Ingest

	Plugin Reconfigure

	Plugin Shutdown

	C++ Helper Class

	C++ Filter Example
	Plugin Interface

	Filter Class

	Filter Class Implementation

	Python Filter API
	Plugin Information

	Plugin Initialisation

	Plugin Ingestion

	Plugin Reconfigure

	Plugin Shutdown

	Python Filter Example

	Notification Delivery Plugins
	Configuration

	Notification Delivery Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Delivery

	Plugin Reconfigure

	Plugin Shutdown

	Plugin Packaging
	Common files

	C based Plugins
	Examples of filename along with content

	Common Additional Libraries Package

	Python based Plugins
	Examples of filename along with content

	Building A Package

	Testing Your Plugin
	Initial Testing

	C/C++ Common Faults

	Running Under a Debugger
	Running a Service Under the Debugger

	Running a Task Under the Debugger

	Running the Storage Service Under the Debugger

	Using strace

	Memory Leaks and Corruptions

	Python Plugin Info

	Developing with Windows Subsystem for Linux (WSL2)
	Preparing the Development Environment
	Installing Windows Subsystem for Linux (WSL2)
	Some Useful Features of WSL2

	Preparing the Linux Distribution for Fledge

	Installing Fledge

	Installing Visual Studio Code

	Starting the Linux Distribution
	Starting syslog

	Starting Nginx

	Starting Fledge

	Starting Fledge GUI

	Configuring Visual Studio Code
	Installing Extensions

	Configuring your Workspace
	Code Editor Configuration: c_cpp_properties.json

	Build Configuration: tasks.json

	Debugger Configuration: launch.json

	Known Problems

	References

 Source Code Documentation

Source Code Documentation

Documentation of source code will be available here

Single PDF document will be available pdf

 Plugins

 Fledge makes extensive use of plugin components to extend the base functionality of the platform. In particular, plugins are used to;

	Extend the set of sensors and actuators that Fledge supports.

	Extend the set of services to which Fledge will push accumulated data gathered from those sensors.

	The mechanism by which Fledge buffers data internally.

	Filter plugins may be used to augment, edit or remove data as it flows through Fledge.

	Rule plugins extend the rules that may trigger the delivery of notifications at the edge.

	Notification delivery plugins allow for new delivery mechanisms to be integrated into Fledge.

This chapter presents the plugins that are bundled with Fledge, how to write and use new plugins to support different sensors, protocols, historians and storage devices. It will guide you through the process and entry points that are required for the various different types of plugin.

There are also numerous plugins that are available as separate packages or in separate repositories that may be used with Fledge.

Plugins

In this version of Fledge you have six types of plugins:

	South Plugins - They are responsible for communication between Fledge and the sensors and actuators they support. Each instance of a Fledge South microservice will use a plugin for the actual communication to the sensors or actuators that that instance of the South microservice supports.

	North Plugins - They are responsible for taking reading data passed to them from the South bound service and doing any necessary conversion to the data and providing the protocol to send that converted data to a north-side task.

	Storage Plugins - They sit between the Storage microservice and the physical data storage mechanism that stores the Fledge configuration and readings data. Storage plugins differ from other plugins in that they are written exclusively in C/C++, however they share the same common attributes and entry points that the other filter must support.

	Filter Plugins - Filter plugins are used to modify data as it flows through Fledge. Filter plugins may be combined into a set of ordered filters that are applied as a pipeline to either the south ingress service or the north egress task that sends data to external systems.

	Notification Rule Plugins - These are used by the optional notification service in order to evaluate data that flows into the notification service to determine if a notification should be sent.

	Notification Delivery Plugins - These plugins are used by the optional notification service to deliver a notification to a system when a notification rule has triggered. These plugins allow the mechanisms to deliver notifications to be extended.

Plugins in this version of Fledge

This version of Fledge provides the following plugins in the main repository:

	Type

	Name

	Initial

 Status

	Description

	Availability

	Notes

	Storage

	SQLite

	Enabled

	SQLite storage

for data and metadata

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	

	Storage

	Postgres

	Disabled

	PostgreSQL storage

for data and metadata

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	

	North

	OMF

	Disabled

	OSIsoft Message Format

sender to PI Connector

Relay OMF

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	It works with PI Connector

Relay OMF 1.2.X and 2.2. The plugin
also works against EDS and OCS.

In addition to the plugins in the main repository, there are many other plugins available in separate repositories, a list of the available plugins is maintained within this document.

Installing New Plugins

As a general rule and unless the documentation states otherwise, plugins should be installed in two ways:

	When the plugin is available as package, it should be installed when Fledge is running.
 This is the required method because the package executed pre and post-installation tasks that require Fledge to run.

	When the plugin is available as source code, it should be installed when Fledge is either running or not.
 You will want to manually move the plugin code into the right location where Fledge is installed, add pre-requisites and execute the REST commands necessary to start the plugin after you have started Fledge if it is not running when you start this process.

For example, this is the command to use to install the OpenWeather South plugin:

$ sudo systemctl status fledge.service
● fledge.service - LSB: Fledge
 Loaded: loaded (/etc/init.d/fledge; bad; vendor preset: enabled)
 Active: active (running) since Wed 2018-05-16 01:32:25 BST; 4min 1s ago
 Docs: man:systemd-sysv-generator(8)
 CGroup: /system.slice/fledge.service
 ├─13741 python3 -m fledge.services.core
 └─13746 /usr/local/fledge/services/storage --address=0.0.0.0 --port=40138

May 16 01:36:09 ubuntu python3[13741]: Fledge[13741] INFO: scheduler: fledge.services.core.scheduler.scheduler: Process started: Schedule 'stats collection' process 'stats coll
 ['tasks/statistics', '--port=40138', '--address=127.0.0.1', '--name=stats collector']
...
Fledge v1.3.1 running.
Fledge Uptime: 266 seconds.
Fledge records: 0 read, 0 sent, 0 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
=== Fledge tasks:
$
$ sudo cp fledge-south-openweathermap-1.2-x86_64.deb /var/cache/apt/archives/.
$ sudo apt install /var/cache/apt/archives/fledge-south-openweathermap-1.2-x86_64.deb
Reading package lists... Done
Building dependency tree
Reading state information... Done
Note, selecting 'fledge-south-openweathermap' instead of '/var/cache/apt/archives/fledge-south-openweathermap-1.2-x86_64.deb'
The following packages were automatically installed and are no longer required:
 linux-headers-4.4.0-109 linux-headers-4.4.0-109-generic linux-headers-4.4.0-119 linux-headers-4.4.0-119-generic linux-headers-4.4.0-121 linux-headers-4.4.0-121-generic
 linux-image-4.4.0-109-generic linux-image-4.4.0-119-generic linux-image-4.4.0-121-generic linux-image-extra-4.4.0-109-generic linux-image-extra-4.4.0-119-generic
 linux-image-extra-4.4.0-121-generic
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed
 fledge-south-openweathermap
0 to upgrade, 1 to newly install, 0 to remove and 0 not to upgrade.
Need to get 0 B/3,404 B of archives.
After this operation, 0 B of additional disk space will be used.
Selecting previously unselected package fledge-south-openweathermap.
(Reading database ... 211747 files and directories currently installed.)
Preparing to unpack .../fledge-south-openweathermap-1.2-x86_64.deb ...
Unpacking fledge-south-openweathermap (1.2) ...
Setting up fledge-south-openweathermap (1.2) ...
openweathermap plugin installed.
$
$ fledge status
Fledge v1.3.1 running.
Fledge Uptime: 271 seconds.
Fledge records: 36 read, 0 sent, 0 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.south --port=42066 --address=127.0.0.1 --name=openweathermap
=== Fledge tasks:
$

You may also install new plugins directly from within the Fledge GUI, however you will need to have setup your Linux machine to include the Fledge package repository in the list of repositories the Linux package manager searches for new packages.

 Representing Data

Representing Data

The key purpose of Fledge and the plugins is the manipulation of data, that data is passed around the system and represented in a number of ways. This section will introduce the data representation formats used at various locations within the Fledge system. Conceptually the unit of data that we use is a reading. The reading represents the state of a monitored device at a point in time and has a number of elements.

	Name

	Description

	asset

	The name of the asset or device to which the data refers

	timestamp

	The point in time at which these values where observed.

	data points

	A set of named values for the data held for the asset

There are actually two timestamps within a reading and these may be different. There is a user_ts, which is the time the plugin assigned to the reading data and may come from the device itself and the ts. The ts timestamp is set by the system when the data is read into Fledge. Unless the plugin is able to determine a timestamp from the device the user_ts is usually the same as the ts.

The data points themselves are a set of name and value pairs, with the values supporting a number of different data types. These will be described below.

Reading data is nominally stored and passed between the APIs using JSON, however for convenience it is access in different ways within the different languages that can be used to implement Fledge components and plugins. In JSON a reading is represented as a JSON DICT whereas in C++ a Reading is a class, as is a data point. The way the different data point types are represented is outline below.

	Type

	JSON

	C++

	Python

	Integer

	An integer

	An int

	An integer

	Floating Point

	A floating point value

	A double

	A floating point

	Boolean

	A string either “true”
or “false”

	A bool

	A boolean

	String

	A string

	A std::string pointer

	A string

	List of numbers

	An array of floating
point values

	A std::vector<double>

	A list of floating point
values

	2 Dimensional list of numbers

	A list of lists of
floating point values

	A std::vector of
std::vector<double>
pointers

	A list of lists of floating
point values

	Data buffer

	A base64 encoded string
with a header

	A Databuffer class

	A 1 dimensional numpy array
of values

	Image

	A base64 encoded string
with a header

	A DPImage class

	A 2 dimensional numpy array of
pixels. In the case of RGB
images each pixels is an array

 Writing and Using Plugins

Writing and Using Plugins

A plugin has a small set of external entry points that must exist in order for Fledge to load and execute that plugin. Currently plugins may be written in either Python or C/C++, the set of entry points is the same for both languages. The entry points detailed here will be presented for both languages, a more in depth discussion of writing plugins in C/C++ will then follow.

Common Fledge Plugin API

Every plugin provides at least one common API entry point, the plugin_info entry point. It is used to obtain information about a plugin before it is initialized and used. It allows Fledge to determine what type of plugin it is, e.g. a South bound plugin or a North bound plugin, obtain default configuration information for the plugin and determine version information.

Plugin Information

The information entry point is implemented as a call, plugin_info, that takes no arguments. Data is returned from this API call as a JSON document with certain well known properties.

A typical Python implementation of this would simply return a fixed dictionary object that encodes the required properties.

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

These are the properties returned by the JSON document:

	name - A textual name that will be used for reporting purposes for this plugin.

	version - This property allows the version of the plugin to be communicated to the plugin loader. This is used for reporting purposes only and has no effect on the way Fledge interacts with the plugin.

	mode - A set of options that defines how the plugin operates. Multiple values can be given, the different options are separated from each other using the | symbol.

	type - The type of the plugin, used by the plugin loader to determine if the plugin is being used correctly. The type is a simple string and may be south, north, filter, rule or delivery.

Note

If you browse the Fledge code you may find old plugins with type device: this was the type used to indicate a South plugin and it is now deprecated.

	interface - This property reports the version of the plugin API to which this plugin was written. It allows Fledge to support upgrades of the API whilst being able to recognise the version that a particular plugin is compliant with. Currently all interfaces are version 1.0.

	configuration - This allows the plugin to return a JSON document which contains the default configuration of the plugin. This is in line with the extensible plugin mechanism of Fledge, each plugin will return a set of configuration items that it wishes to use, this will then be used to extend the set of Fledge configuration items. This structure, a JSON document, includes default values but no actual values for each configuration option. The first time Fledge’s configuration manager sees a category it will register the category and create values for each item using the default value in the configuration document. On subsequent calls the value already in the configuration manager will be used.
 This mechanism allows the plugin to extend the set of configuration variables whilst giving the user the opportunity to modify the value of these configuration items. It also allow new versions of plugins to add new configuration items whilst retaining the values of previous items. And new items will automatically be assigned the default value for that item.
 As an example, a plugin that wishes to maintain two configuration variables, say a GPIO pin to use and a polling interval, would return a configuration document that looks as follows:

{
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }
}

The various values that may appear in the mode item are shown in the table below

	Mode

	Description

	poll

	The plugin is a polled plugin and plugin_poll will be called periodically to obtain
new values.

	async

	The plugin is an asynchronous plugin, plugin_poll will not be called and the
plugin will be supplied with a callback function that it calls each time it has a
new value to pass to the system. The plugin_register_ingest entry point will be
called to register the callback with the plugin. The plugin_start call will be
called once to initiate the asynchronous delivery of data.

	none

	This is equivalent to poll.

	control

	The plugin support a control flow to the device the plugin is connected to. The
must supply the control entry points plugin_write and plugin_operation.

A C/C++ plugin returns the same information as a structure, this structure includes the JSON configuration document as a simple C string.

#include <plugin_api.h>

extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 "MyPlugin", // Name
 "1.0.1", // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

In the above example the constant default_config is a string that contains the JSON configuration document. In order to make the JSON easier to manage a special macro is defined in the plugin_api.h header file. This macro is called QUOTE and is designed to ease the quoting requirements to create this JSON document.

const char *default_config = QUOTE({
 "plugin" : {
 "description" : "My example plugin in C++",
 "type" : "string",
 "default" : "MyPlugin",
 "readonly" : "true"
 },
 "asset" : {
 "description" : "The name of the asset the plugin will produce",
 "type" : "string",
 "default" : "MyAsset"
 }
});

The flags items contains a bitmask of flag values used to pass information regarding the behavior and requirements of the plugin. The flag values currently supported are shown below

	Flag Name

	Description

	SP_COMMON

	Used exclusively by storage plugins. The plugin supports the common table
access needed to store configuration

	SP_READINGS

	Used exclusively by storage plugins. The plugin supports the storage of reading
data

	SP_ASYNC

	The plugin is an asynchronous plugin, plugin_poll will not be called and the
plugin will be supplied with a callback function that it calls each time it has
a new value to pass to the system. The plugin_register_ingest entry point will
be called to register the callback with the plugin. The plugin_start call will
be called once to initiate the asynchronous delivery of data. This applies
only to south plugins.

	SP_PERSIST_DATA

	The plugin wishes to persist data between executions

	SP_INGEST

	A non-south plugin wishes to ingest new data into the system. Used by
notification plugins

	SP_GET_MANAGEMENT

	The plugin requires access to the management API interface for the service

	SP_GET_STORAGE

	The plugin requires access to the storage service

	SP_DEPRECATED

	The plugin should be considered to be deprecated. New service can not use this
plugin, but existing services may continue to use it

	SP_BUILTIN

	The plugin is not implemented as an external package but is built into the
system

	SP_CONTROL

	The plugin implement control features

These flag values may be combined by use of the or operator where more than one of the above options is supported.

Plugin Initialization

The plugin initialization is called after the service that has loaded the plugin has collected the plugin information and resolved the configuration of the plugin but before any other calls will be made to the plugin. The initialization routine is called with the resolved configuration of the plugin, this includes values as opposed to the defaults that were returned in the plugin_info call.

This call is used by the plugin to do any initialization or state creation it needs to do. The call returns a handle which will be passed into each subsequent call of the plugin. The handle allows the plugin to have state information that is maintained and passed to it whilst allowing for multiple instances of the same plugin to be loaded by a service if desired. It is equivalent to a this or self pointer for the plugin, although the plugin is not defined as a class.

In Python a simple example of a sensor that reads a GPIO pin for data, we might choose to use that configured GPIO pin as the handle we pass to other calls.

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

A C/C++ plugin should return a value in a void pointer that can then be dereferenced in subsequent calls. A typical C++ implementation might create an instance of a class and use that instance as the handle for the plugin.

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
MyPluginClass *plugin = new MyPluginClass();

 plugin->configure(config);

 return (PLUGIN_HANDLE)plugin;
}

It should also be observed in the above C/C++ example the plugin_init call is passed a pointer to a ConfigCategory class that encapsulates the JSON configuration category for the plugin. Details of the ConfigCategory class are available in the section C++ Support Classes.

Plugin Shutdown

The plugin shutdown method is called as part of the shutdown sequence of the service that loaded the plugin. It gives the plugin the opportunity to do any cleanup operations before terminating. As with all calls it is passed the handle of our plugin instance. Plugins can not prevent the shutdown and do not have to implement any actions. In our simple sensor example there is nothing to do in order to shutdown the plugin.

A C/C++ plugin might use this plugin_shutdown call to delete the plugin class instance it created in the corresponding plugin_init call.

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 delete plugin;
}

Plugin Reconfigure

The plugin reconfigure method is called whenever the configuration of the plugin is changed. It allows for the dynamic reconfiguration of the plugin whilst it is running. The method is called with the handle of the plugin and the updated configuration document. The plugin should take whatever action it needs to and return a new or updated copy of the handle that will be passed to future calls.

The plugin reconfigure method is shared between most but not all plugin types. In particular it does not exist for the shorted lived plugins that are created to perform a single operation and then terminated. These are the north plugins and the notification delivery plugins.

Using a simple Python example of our sensor reading a GPIO pin, we extract the new pin number from the new configuration data and return that as the new handle for the plugin instance.

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

In C/C++ the plugin_reconfigure method is very similar, note however that the plugin_reconfigure call is passed the JSON configuration category as a string and not a ConfigCategory, it is easy to parse and create the C++ class however, a name for the category must be given however.

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory config("newConfiguration", newConfig);
MyPluginClass *plugin = (MyPluginClass *)*handle;

 plugin->configure(&config);
}

It should be noted that the plugin_reconfigure call may be delivered in a separate thread for a C/C++ plugin and that the plugin should implement any mutual exclusion mechanisms that are required based on the actions of the plugin_reconfigure method.

Configuration Lifecycle

Fledge has a very particular way of handling configuration, there are a number of design aims that have resulted in the configuration system within Fledge.

	A desire to allow the plugins to define their own configuration elements.

	Dynamic configuration that allows for maximum uptime during configuration changes.

	A descriptive way to define the configuration such that user interfaces can be built without prior knowledge of the elements to be configured.

	A common approach that will work across many different languages.

Fledge divides its configuration in categories. A category being a collection of configuration items. A category is also the smallest item of configuration that can be subscribed to by the code. This subscription mechanism is they way that Fledge facilitates dynamic reconfiguration. It allows a service to subscribe to one or more configuration categories, whenever an item within a category changes the central configuration manager will call a handler to pass the newly updated configuration category. This handler may be within a services or between services using the micro service management API that every service must support. The mechanism however is transparent to the code involved.

The configuration items within a category are JSON object, the object key is the name of the configuration item, the object itself contains data about that item. As an example, if we wanted to have a configuration item called MaxRetries that is an integer with a default value of 5, then we would configured it using the JSON object

"MaxRetries" : {
 "type" : "integer",
 "default" : "5"
 }

We have used the properties type and default to define properties of the configuration item MaxRetries. These are not the only properties that a configuration item can have, the full set of properties are

	Property

	Description

	default

	The default value for the configuration item. This is always expressed as a string regardless of the type of the configuration item.

	deprecated

	A boolean flag to indicate that this item is no longer used and will be removed in a future release.

	description

	A description of the configuration item used in the user interface to give more details of the item. Commonly used as a mouse over help prompt.

	displayName

	The string to use in the user interface when presenting the configuration item. Generally a more user friendly form of the item name. Item names are referenced within the code.

	length

	The maximum length of the string value of the item.

	mandatory

	A boolean flag to indicate that this item can not be left blank.

	maximum

	The maximum value for a numeric configuration item.

	minimum

	The minimum value for a numeric configuration item.

	options

	Only used for enumeration type elements. This is a JSON array of string that contains the options in the enumeration.

	order

	Used in the user interface to give an indication of how high up in the dialogue to place this item.

	readonly

	A boolean property that can be used to include items that can not be altered by the API.

	rule

	A validation rule that will be run against the value. This must evaluate to true for the new value to be accepted by the API

	type

	The type of the configuration item. The list of types supported are; integer, float, string, password, enumeration, boolean, JSON, URL, IPV4, IPV6, script, code, X509 certificate and northTask.

	validity

	An expression used to determine if the configuration item is valid. Used in the UI to gray out one value based on the value of others.

	value

	The current value of the configuration item. This is not included when defining a set of default configuration in, for example, a plugin.

Of the above properties of a configuration item type, default and description are mandatory, all other may be omitted.

Configuration data is stored by the storage service and is maintained by the configuration in the core Fledge service. When code requires configuration it would create a configuration category with a set of items as a JSON document. It would then register that configuration category with the configuration manager. The configuration manager is responsible for storing the data in the storage layer, as it does this it first checks to see if there is already a configuration category from a previous execution of the code. If one does exist then the two are merged, this merging process allows updates to the software to extend the configuration category whilst maintaining any changes in values made by the user.

Dynamic reconfiguration within Fledge code is supported by allowing code to subscribe for changes in a configuration category. The services that load plugin will automatically register for the plugin configuration category and when changes are seen will call the plugin_reconfigure entry point of the plugin with the new configuration. This allows the plugins to receive the updated configuration and take what actions it must in order to honour the changes to configuration. This allows for configuration to be changed without the need to stop and restart the services, however some plugins may need to close connections and reopen them, which may cause a slight interruption in the process of gathering data. That choice is up to the developers of the individual plugins.

Discovery

It is possible using this system to do a limited amount of discovery and tailoring of plugin configuration. A typical case when discovery might be used is to discover devices on a network that can be monitored. This can be achieved by putting the discovery code in the plugin_info entry point and having that discovery code alter the default configuration that is returned as part of the plugin information structure.

Any example of this might be to have an enumeration in the configuration that enumerates the devices to be monitored. The discovery code would then populate the enumerations options item with the various devices it discovered when the plugin_info call was made.

An example of the plugin_info entry point that does this might be as follows

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
DeviceDiscovery discover;

 char *config = discover.discover(default_config, "discovered");
 info.config = config;
 return &info;
}

The configuration in default_config is assumed to have an enumeration item called discovered

"discovered" : {
 "description" : "The discovered devices, select 'Manual' to manually enter an IP address",
 "type" : "enumeration",
 "options" : ["Manual"],
 "default" : "Manual",
 "displayName": "Devices",
 "mandatory": "true",
 "order" : "2"
 },
"IP" : {
 "description" : "The IP address of your device, used to add a device that could not be discovered",
 "type" : "string",
 "default" : "127.0.0.1",
 "displayName": "IP Address",
 "mandatory": "true",
 "order" : "3",
 "validity" : "discovered == \"Manual\""
 },

Note the use of the Manual option to allow entry of devices that could not be discovered.

The discover method does the actually discovery and manipulates the JSON configuration to add the the options element of the configuration item.

The code that connects to the device should then look at the discovered configuration item, if it finds it set to Manual then it will get an IP address from the IP configuration item. Otherwise it uses the information in the discovered item to connect, note that this need not just be an IP address, you can format the data in a way that is more user friendly and have the connection code extract what it needs or create a table in the discover method to allow for user meaningful strings to be mapped to network addresses.

The example here was written in C++, there is nothing that is specific to C++ however and the same approach can be taken in Python.

One thing to note however, the plugin_info call is used in the display of available plugins, discovery code that is very slow will impact the performance of plugin selection.

 South Plugins

South Plugins

South plugins are used to communicate with sensors and actuators, there are two modes of plugin operation; asyncio and polled.

Polled Mode

Polled mode is the simplest form of South plugin that can be written, a poll routine is called at an interval defined in the plugin configuration. The South service determines the type of the plugin by examining at the mode property in the information the plugin returns from the plugin_info call.

Plugin Poll

The plugin poll method is called periodically to collect the readings from a poll mode sensor. As with all other calls the argument passed to the method is the handle returned by the initialization call, the return of the method should be the JSON payload of the readings to return.

The JSON payload returned, as a Python dictionary, should contain the properties; asset, timestamp, key and readings.

	Property

	Description

	asset

	The asset key of the sensor device that is being read

	timestamp

	A timestamp for the reading data

	key

	A UUID which is the unique key of this reading

	readings

	The reading data itself as a JSON object

It is important that the poll method does not block as this will prevent the proper operation of the South microservice.
Using the example of our simple DHT11 device attached to a GPIO pin, the poll routine could be:

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = { 'temperature': temperature , 'humidity' : humidity }
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

Async IO Mode

In asyncio mode the plugin inserts itself into the event processing loop of the South Service itself. This is a more complex mechanism and is intended for plugins that need to block or listen for incoming data via a network.

Plugin Start

The plugin_start method, as with other plugin calls, is called with the plugin handle data that was returned from the plugin_init call. The plugin_start call will only be called once for a plugin, it is the responsibility of plugin_start to install the plugin code into the python event handling system for asyncIO. Assuming an example whereby the interface to a sensor is via HTTP and the sensor will make HTTP POST calls to our plugin in order to send data into Fledge, a plugin_start for this scenario would create a web application endpoint for reception of the POST command.

loop = asyncio.get_event_loop()
app = web.Application(middlewares=[middleware.error_middleware])
app.router.add_route('POST', '/', SensorPhoneIngest.render_post)
handler = app.make_handler()
coro = loop.create_server(handler, host, port)
server = asyncio.ensure_future(coro)

This code first gets the event loop for this Python execution, it then creates the web application and adds a route for the POST request. In this case it is calling the render_post method of the object SensorPhone. It then goes on to create the handler and install the web server instance into the event system.

Async Data Callback

The async data callback is used for incoming sensor data and passing that reading data into the Fledge ingest process. Unlike the poll mechanism, this is done from within the callback rather than by passing the data back to the South service itself. A plugin entry point, plugin_register_ingest is called by the south service before the plugin is started to register the callback with the plugin. The plugin would usually save the callback function and the reference data for later use.

def plugin_register_ingest(handle, callback, ingest_ref):
 """Required plugin interface component to communicate to South C server

 Args:
 handle: handle returned by the plugin initialisation call
 callback: C opaque object required to passed back to C->ingest method
 ingest_ref: C opaque object required to passed back to C->ingest method
 """
 global c_callback, c_ingest_ref
 c_callback = callback
 c_ingest_ref = ingest_ref

The plugin then uses these saved references when it has data to be ingested. A new reading is constructed and passed to the callback function using async_ingest object that should be imported by the plugin.

import async_ingest

Then for each reading to be ingested the data is sent to the ingest thread of the south plugin using the following construct.

data = {
 'asset': self.asset_name,
 'timestamp': utils.local_timestamp(),
 'readings': reads
}
async_ingest.ingest_callback(c_callback, c_ingest_ref, data)

message['status'] = code
return web.json_response(message)

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the mode field in the plugin information dict which is returned by the plugin_info entry point of the plugin. The flag value control should be added to the mode field of the plugin. Multiple flag values are separated by the pipe symbol ‘|’.

plugin information dict
{
 'name': 'Sinusoid Poll plugin',
 'version': '1.9.2',
 'mode': 'poll|control',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
}

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

def plugin_write(handle, name, value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign to the item

The return value defines if the write was successful or not. True is returned for a successful write.

def plugin_write(handle, name, value):
 """ Setpoint write operation

 Args:
 handle: handle returned by the plugin initialisation call
 name: Name of parameter to write
 value: Value to be written to that parameter
 Returns:
 bool: Result of the write operation
 """
 _LOGGER.info("plugin_write(): name={}, value={}".format(name, value))
 return True

In this case we are merely printing the parameter name and the value to be set for this parameter. Normally control would be used for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the API.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

def plugin_operation(handle, operation, params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	params a list of name/value tuples that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed. The actual parameters are passed in a list of key/value tuples as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

def plugin_operation(handle, operation, params):
 """ Setpoint control operation

 Args:
 handle: handle returned by the plugin initialisation call
 operation: Name of operation
 params: Parameter list
 Returns:
 bool: Result of the operation
 """
 _LOGGER.info("plugin_operation(): operation={}, params={}".format(operation, params))
 return True

In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself. Above example is just a demonstration of the API.

A South Plugin Example In Python: the DHT11 Sensor

Let’s try to put all the information together and write a plugin. We can continue to use the example of an inexpensive sensor, the DHT11, used to measure temperature and humidity, directly wired to a Raspberry PI. This plugin is available on github, Fledge DHT11 South Plugin.

First, here is a set of links where you can find more information regarding this sensor:

	DHT11 Product Description

	DHT11 Product Manual

	ADAFruit DHT Library

The Hardware

The DHT sensor is directly connected to a Raspberry PI 2 or 3. You may decide to buy a sensor and a resistor and solder them yourself, or you can buy a ready-made circuit that provides the correct output to wire to the Raspberry PI. This picture shows a DHT11 with resistor that you can buy online.

The sensor can be directly connected to the Raspberry PI GPIO (General Purpose Input/Output). An introduction to the GPIO and the pinset is available here. In our case, you must connect the sensor on these pins:

	VCC is connected to PIN #2 (5v Power)

	GND is connected to PIN #6 (Ground)

	DATA is connected to PIN #7 (BCM 4 - GPCLK0)

This picture shows the sensor wired to the Raspberry PI and this is a zoom into the wires used.

The Software

For this plugin we use the ADAFruit Python Library (links to the GitHub repository are above). First, you must install the library (in future versions the library will be provided in a ready-made package):

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
Cloning into 'Adafruit_Python_DHT'...
remote: Counting objects: 249, done.
remote: Total 249 (delta 0), reused 0 (delta 0), pack-reused 249
Receiving objects: 100% (249/249), 77.00 KiB | 0 bytes/s, done.
Resolving deltas: 100% (142/142), done.
$ cd Adafruit_Python_DHT
$ sudo apt-get install build-essential python-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
build-essential python-dev
...
$ sudo python3 setup.py install
running install
running bdist_egg
running egg_info
creating Adafruit_DHT.egg-info
...
$

The Plugin

This is the code for the plugin:

-*- coding: utf-8 -*-

FLEDGE_BEGIN
See: http://fledge-iot.readthedocs.io/
FLEDGE_END

""" Plugin for a DHT11 temperature and humidity sensor attached directly
 to the GPIO pins of a Raspberry Pi

 This plugin uses the Adafruit DHT library, to install this perform
 the following steps:

 git clone https://github.com/adafruit/Adafruit_Python_DHT.git
 cd Adafruit_Python_DHT
 sudo apt-get install build-essential python-dev
 sudo python setup.py install

 To access the GPIO pins fledge must be able to access /dev/gpiomem,
 the default access for this is owner and group read/write. Either
 Fledge must be added to the group or the permissions altered to
 allow Fledge access to the device.
 """

from datetime import datetime, timezone
import uuid

from fledge.common import logger
from fledge.services.south import exceptions

__author__ = "Mark Riddoch"
__copyright__ = "Copyright (c) 2017 OSIsoft, LLC"
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Python module name of the plugin to load',
 'type': 'string',
 'default': 'dht11'
 },
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }

}

_LOGGER = logger.setup(__name__)
""" Setup the access to the logging system of Fledge """

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = {'temperature': temperature, 'humidity': humidity}
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup, to be called prior to the device service being shut down.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 Raises:
 """
 pass

Building Fledge and Adding the Plugin

If you have not built Fledge yet, follow the steps described here. After the build, you can optionally install Fledge following these steps.

	If you have started Fledge from the build directory, copy the structure of the fledge-south-dht11/python/ directory into the python directory:

$ cd ~/Fledge
$ cp -R ~/fledge-south-dht11/python/fledge/plugins/south/dht11 python/fledge/plugins/south/
$

	If you have installed Fledge by executing sudo make install, copy the structure of the fledge-south-dht11/python/ directory into the installed python directory:

$ sudo cp -R ~/fledge-south-dht11/python/fledge/plugins/south/dht11 /usr/local/fledge/python/fledge/plugins/south/
$

Note

If you have installed Fledge using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/fledge/service -d '{"name": "dht11", "type": "south", "plugin": "dht11", "enabled": true}'

Note

Each plugin repo has its own debian packaging script and documentation, And that is the recommended way to go! As above method(s) may need explicit action for linux and/or python dependencies installation.

Using the Plugin

Once south plugin is added as an enabled service, You are ready to use the DHT11 plugin.

$ curl -X GET http://localhost:8081/fledge/service | jq

Let’s see what we have collected so far:

$ curl -s http://localhost:8081/fledge/asset | jq
[
 {
 "count": 158,
 "asset_code": "dht11"
 }
]
$

Finally, let’s extract some values:

$ curl -s http://localhost:8081/fledge/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:41:39.672",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:35.615",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:34.087",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:32.557",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:31.028",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 }
]
$

Clearly we will not see many changes in temperature or humidity, unless we place our thumb on the sensor or we blow warm breathe on it :-)

$ curl -s http://localhost:8081/fledge/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:43:16.787",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:15.258",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:13.729",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:12.201",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:05.616",
 "reading": {
 "temperature": 22,
 "humidity": 95
 }
 }
]
$

Needless to say, the North plugin will send the buffered data to the PI system using the OMF plugin or any other north system using the appropriate north plugin.

[image: DHT11 in PI] [https://s3.amazonaws.com/fledge-iot/readthedocs/images/06_dht11_tags_in_PI.jpg]

 South Plugins in C

South Plugins in C

South plugins written in C/C++ are no different in use to those written in Python, it is merely a case that they are implemented in a different language. The same options of polled or asynchronous methods still exist and the enduser of Fledge is not aware in which language the plugin has been written.

Polled Mode

Polled mode is the simplest form of South plugin that can be written, a poll routine is called at an interval defined in the plugin advanced configuration. The South service determines the type of the plugin by examining the mode property in the information the plugin returns from the plugin_info call.

Plugin Poll

The plugin poll method is called periodically to collect the readings from a poll mode sensor. As with all other calls the argument passed to the method is the handle returned by the plugin_init call, the return of the method should be a Reading instance that contains the data read.

The Reading class consists of

	Property

	Description

	assetName

	The asset key of the sensor device that is being read

	userTimestamp

	A timestamp for the reading data

	datapoints

	The reading data itself as a set if datapoint instances

More detail regarding the Reading class can be found in the section C++ Support Classes.

It is important that the poll method does not block as this will prevent the proper operation of the South microservice. Using the example of our simple DHT11 device attached to a GPIO pin, the poll routine could be:

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

Where our DHT11 class has a method takeReading as follows

/**
 * Take reading from sensor
 *
 * @param firstReading This flag indicates whether this is the first reading to be taken from sensor,
 * if so get it reliably even if takes multiple retries. Subsequently (firstReading=false),
 * if reading from sensor fails, last good reading is returned.
 */
Reading DHT11::takeReading(bool firstReading)
{
 static uint8_t sensorData[4] = {0,0,0,0};

 bool valid = false;
 unsigned int count=0;
 do {
 valid = readSensorData(sensorData);
 count++;
 } while(!valid && firstReading && count < MAX_SENSOR_READ_RETRIES);

 if (firstReading && count >= MAX_SENSOR_READ_RETRIES)
 Logger::getLogger()->error("Unable to get initial valid reading from DHT11 sensor connected to pin %d even after %d tries", m_pin, MAX_SENSOR_READ_RETRIES);

 vector<Datapoint *> vec;

 ostringstream tmp;
 tmp << ((unsigned int)sensorData[0]) << "." << ((unsigned int)sensorData[1]);
 DatapointValue dpv1(stod(tmp.str()));
 vec.push_back(new Datapoint("Humidity", dpv1));

 ostringstream tmp2;
 tmp2 << ((unsigned int)sensorData[2]) << "." << ((unsigned int)sensorData[3]);
 DatapointValue dpv2(stod(tmp2.str()));
 vec.push_back(new Datapoint ("Temperature", dpv2));

 return Reading(m_assetName, vec);
}

We are creating two DatapointValues for the Humidity and Temperature values returned by reading the DHT11 sensor.

Plugin Poll Returning Multiple Values

It is possible in a C/C++ plugin to have a plugin that returns multiple readings in a single call to a poll routine. This is done by setting the interface version of 2.0.0 rather than 1.0.0. In this interface version the plugin_poll call returns a vector of Reading rather than a single Reading.

/**
 * Poll for a plugin reading
 */
std::vector<Reading *> *plugin_poll(PLUGIN_HANDLE *handle)
{
Modbus *modbus = (Modbus *)handle;

 if (!handle)
 throw runtime_error("Bad plugin handle");
 return modbus->takeReading();
}

Async IO Mode

In asyncio mode the plugin runs either a separate thread or uses some incoming event from a device or callback mechanism to trigger sending data to Fledge. The asynchronous mode uses two additional entry points to the plugin, one to register a callback on which the plugin sends data, plugin_register_ingest and another to start the asynchronous behavior plugin_start.

Plugin Register Ingest

The plugin_register_ingest call is used to allow the south service to pass a callback function to the plugin that the plugin uses to send data to the service every time the plugin has some new data.

/**
 * Register ingest callback
 */
void plugin_register_ingest(PLUGIN_HANDLE *handle, INGEST_CB cb, void *data)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 if (!handle)
 throw new exception();
 plugin->registerIngest(data, cb);
}

The plugin should store the callback function pointer and the data associated with the callback such that it can use that information to pass a reading to the south service. The following code snippets show how a plugin class might store the callback and data and then use it to send readings into Fledge at a later stage.

/**
 * Record the ingest callback function and data in member variables
 *
 * @param data The Ingest function data
 * @param cb The callback function to call
 */
void MyPluginClass::registerIngest(void *data, INGEST_CB cb)
{
 m_ingest = cb;
 m_data = data;
}

/**
 * Called when a data is available to send to the south service
 *
 * @param points The points in the reading we must create
 */
void MyPluginClass::ingest(Reading& reading)
{

 (*m_ingest)(m_data, reading);
}

Plugin Start

The plugin_start method, as with other plugin calls, is called with the plugin handle data that was returned from the plugin_init call. The plugin_start call will only be called once for a plugin, it is the responsibility of plugin_start to take whatever action is required in the plugin in order to start the asynchronous actions of the plugin. This might be to start a thread, register an endpoint for a remote connection or call an entry point in a third party library to start asynchronous processing.

/**
 * Start the Async handling for the plugin
 */
void plugin_start(PLUGIN_HANDLE *handle)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 if (!handle)
 return;
 plugin->start();
}

/**
 * Start the asynchronous processing thread
 */
void MyPluginClass::start()
{
 m_running = true;
 m_thread = new thread(threadWrapper, this);
}

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the flags in the plugin information data structure which is returned by the plugin_info entry point of the plugin. The flag value SP_CONTROL should be added to the flags of the plugin.

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 SP_CONTROL, // Flags - add control
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 CONFIG // Default configuration
};

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

bool plugin_write(PLUGIN_HANDLE *handle, string name, string value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign top the item

The return value defines if the write was successful or not. True is returned for a successful write.

bool plugin_write(PLUGIN_HANDLE *handle, string& name, string& value)
{
Random *random = (Random *)handle;

 return random->write(operation, name, value);
}

In this case the main logic of the write operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

bool Random::write(string& name, string& value)
{
 if (name.compare("mode") == 0)
 {
 if (value.compare("relative") == 0)
 {
 m_mode = RELATIVE_MODE;
 }
 else if (value.compare("absolute") == 0)
 {
 m_mode = ABSOLUTE_MODE;
 }
 Logger::getLogger()->error("Unknown mode requested '%s' ignored.", value.c_str());
 return false;
 }
 else
 {
 Logger::getLogger()->error("Unknown control item '%s' ignored.", name.c_str());
 return false;
 }
 return true;
}

In this case the code is relatively simple as we assume there is a single control parameter that can be written, the mode of operation. We look for the known name and if a different name is passed an error is logged and false is returned. If the correct name is passed in we then check the value and take the appropriate action. If the value is not a recognized value then an error is logged and we again return false.

In this case we are merely setting a value within the plugin, this could equally well be done via configuration and would in that case be persisted between restarted. Normally control would not be used for this, but rather for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the mechanism.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	count the number of parameters

	params a set of name/value pairs that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed, that operation may also be passed a number of parameters. The count of these parameters are passed to the plugin in the count argument and the actual parameters are passed in an array of key/value pairs as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)
{
Random *random = (Random *)handle;

 return random->operation(operation, count, params);
}

In this case the main logic of the operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

/**
 * SetPoint operation. We support reseeding the random number generator
 */
bool Random::operation(const std::string& operation, int count, PLUGIN_PARAMETER **params)
{
 if (operation.compare("seed") == 0)
 {
 if (count)
 {
 if (params[0]->name.compare("seed"))
 {
 long seed = strtol(params[0]->value.c_str(), NULL, 10);
 srand(seed);
 }
 else
 {
 return false;
 }
 }
 else
 {
 srand(time(0));
 }
 Logger::getLogger()->info("Reseeded random number generator");
 return true;
 }
 Logger::getLogger()->error("Unrecognised operation %s", operation.c_str());
 return false;
}

In this example, the operation method checks the name of the operation to perform, only a single operation is supported by this plugin. If this operation name differs the method will log an error and return false. If the operation is recognized it will check for any arguments passed in, retrieve and use it. In this case an optional seed argument may be passed.

There is no actual machine connected here, therefore the operation occurs within the plugin. In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself.

A South Plugin Example In C/C++: the DHT11 Sensor

Using the same example as before, the DHT11 temperature and humidity sensor, let’s look at how to create the plugin in C/C++.

The Software

For this plugin we use the wiringpi C library to connect to the hardware of the Raspberry Pi

$ sudo apt-get install wiringpi
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
wiringpi
...
$

The Plugin

This is the code for the plugin.cpp file that provides the plugin API:

/*
 * Fledge south plugin.
 *
 * Copyright (c) 2018 OSisoft, LLC
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Amandeep Singh Arora
 */
#include <dht11.h>
#include <plugin_api.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string>
#include <logger.h>
#include <plugin_exception.h>
#include <config_category.h>
#include <rapidjson/document.h>
#include <version.h>

using namespace std;
#define PLUGIN_NAME "dht11_V2"

/**
 * Default configuration
 */
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "DHT11 C south plugin",
 "type" : "string",
 "default" : PLUGIN_NAME,
 "readonly": "true"
 },
 "asset" : {
 "description" : "Asset name",
 "type" : "string",
 "default" : "dht11",
 "order": "1",
 "displayName": "Asset Name",
 "mandatory" : "true"
 },
 "pin" : {
 "description" : "Rpi pin to which DHT11 is attached",
 "type" : "integer",
 "default" : "7",
 "displayName": "Rpi Pin"
 }
 });

/**
 * The DHT11 plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
 unsigned int pin;

 if (config->itemExists("pin"))
 {
 pin = stoul(config->getValue("pin"), nullptr, 0);
 }

 DHT11 *dht11= new DHT11(pin);

 if (config->itemExists("asset"))
 dht11->setAssetName(config->getValue("asset"));
 else
 dht11->setAssetName("dht11");

 Logger::getLogger()->info("m_assetName set to %s", dht11->getAssetName());

 return (PLUGIN_HANDLE)dht11;
}

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory conf("dht", newConfig);
DHT11 *dht11 = (DHT11*)*handle;

 if (conf.itemExists("asset"))
 dht11->setAssetName(conf.getValue("asset"));
 if (conf.itemExists("pin"))
 {
 unsigned int pin = stoul(conf.getValue("pin"), nullptr, 0);
 dht11->setPin(pin);
 }
}

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 delete dht11;
}
};

The full source code, including the DHT11 class can be found in GitHub https://github.com/fledge-iot/fledge-south-dht

Building Fledge and Adding the Plugin

If you have not built Fledge yet, follow the steps described here. After the build, you can optionally install Fledge following these steps.

	Clone the fledge-south-dht repository

$ git clone https://github.com/fledge-iot/fledge-south-dht.git
...
$

	Set the environment variable FLEDGE_ROOT to the directory in which you built Fledge

$ export FLEDGE_ROOT=~/fledge
$

	Go to the location in which you cloned the fledge-south-dht repository and create a build directory and run cmake in that directory

$ cd ~/fledge-south-dht
$ mkdir build
$ cd build
$ cmake ..
...
$

	Now make the plugin

$ make
$

	If you have started Fledge from the build directory, copy the plugin into the destination directory

$ mkdir -p $FLEDGE_ROOT/plugins/south/dht
$ cp libdht.so $FLEDGE_ROOT/plugins/south/dht
$

	If you have installed Fledge by executing sudo make install, copy the plugin into the destination directory

$ sudo mkdir -p /usr/local/fledge/plugins/south/dht
$ sudo cp libdht.so /usr/local/fledge/plugins/south/dht
$

Note

If you have installed Fledge using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/fledge/service -d '{"name": "dht", "type": "south", "plugin": "dht", "enabled": true}'

You may now use the C/C++ plugin in exactly the same way as you used a Python plugin earlier.

 C++ Support Classes

C++ Support Classes

A number of support classes exist within the common library that forms part of every Fledge plugin.

Reading

The Reading class and the associated Datapoint and DatapointValue classes provide the mechanism within C++ classes to manipulated the reading asset data. The public part of the Reading class is currently defined as follows;

class Reading {
 public:
 Reading(const std::string& asset, Datapoint *value);
 Reading(const std::string& asset, std::vector<Datapoint *> values);
 Reading(const std::string& asset, std::vector<Datapoint *> values, const std::string& ts);
 Reading(const Reading& orig);

 ~Reading();
 void addDatapoint(Datapoint *value);
 Datapoint *removeDatapoint(const std::string& name);
 std::string toJSON(bool minimal = false) const;
 std::string getDatapointsJSON() const;
 // Return AssetName
 const std::string& getAssetName() const { return m_asset; };
 // Set AssetName
 void setAssetName(std::string assetName) { m_asset = assetName; };
 unsigned int getDatapointCount() { return m_values.size(); };
 void removeAllDatapoints();
 // Return Reading datapoints
 const std::vector<Datapoint *> getReadingData() const { return m_values; };
 // Return reference to Reading datapoints
 std::vector<Datapoint *>& getReadingData() { return m_values; };
 unsigned long getId() const { return m_id; };
 unsigned long getTimestamp() const { return (unsigned long)m_timestamp.tv_sec; };
 unsigned long getUserTimestamp() const { return (unsigned long)m_userTimestamp.tv_sec; };
 void setId(unsigned long id) { m_id = id; };
 void setTimestamp(unsigned long ts) { m_timestamp.tv_sec = (time_t)ts; };
 void setTimestamp(struct timeval tm) { m_timestamp = tm; };
 void setTimestamp(const std::string& timestamp);
 void getTimestamp(struct timeval *tm) { *tm = m_timestamp; };
 void setUserTimestamp(unsigned long uTs) { m_userTimestamp.tv_sec = (time_t)uTs; };
 void setUserTimestamp(struct timeval tm) { m_userTimestamp = tm; };
 void setUserTimestamp(const std::string& timestamp);
 void getUserTimestamp(struct timeval *tm) { *tm = m_userTimestamp; };

 typedef enum dateTimeFormat { FMT_DEFAULT, FMT_STANDARD, FMT_ISO8601 } readingTimeFormat;

 // Return Reading asset time - ts time
 const std::string getAssetDateTime(readingTimeFormat datetimeFmt = FMT_DEFAULT, bool addMs = true) const;
 // Return Reading asset time - user_ts time
 const std::string getAssetDateUserTime(readingTimeFormat datetimeFmt = FMT_DEFAULT, bool addMs = true) const;
}

The Reading class contains a number of items that are mapped to the JSON representation of data that is sent to the Fledge storage service and are used by the various services and plugins within Fledge.

	Asset Name: The name of the asset. The asset name is set in the constructor of the reading and retrieved via the getAssetName() method.

	Timestamp: The timestamp when the reading was first seen within Fledge.

	User Timestamp: The timestamp for the actual data in the reading. This may differ from the value of Timestamp if the device itself is able to supply a timestamp value.

	Datapoints: The actual data of a reading stored in a Datapoint class.

The Datapoint class provides a name for each data point within a Reading and the tagged type data for the reading value. The public definition of the Datapoint class is as follows;

class Datapoint {
 public:
 /**
 * Construct with a data point value
 */
 Datapoint(const std::string& name, DatapointValue& value) : m_name(name), m_value(value);
 ~Datapoint();
 /**
 * Return asset reading data point as a JSON
 * property that can be included within a JSON
 * document.
 */
 std::string toJSONProperty();
 const std::string getName() const;
 void setName(std::string name);
 const DatapointValue getData() const;
 DatapointValue& getData();
}

Closely associated with the Datapoint is the DatapointValue which uses a tagged union to store the values. The public definition of the DatapointValue is as follows;

class DatapointValue {
 public:
 /**
 * Construct with a string
 */
 DatapointValue(const std::string& value)
 {
 m_value.str = new std::string(value);
 m_type = T_STRING;
 };
 /**
 * Construct with an integer value
 */
 DatapointValue(const long value)
 {
 m_value.i = value;
 m_type = T_INTEGER;
 };
 /**
 * Construct with a floating point value
 */
 DatapointValue(const double value)
 {
 m_value.f = value;
 m_type = T_FLOAT;
 };
 /**
 * Construct with an array of floating point values
 */
 DatapointValue(const std::vector<double>& values)
 {
 m_value.a = new std::vector<double>(values);
 m_type = T_FLOAT_ARRAY;
 };

 /**
 * Construct with an array of Datapoints
 */
 DatapointValue(std::vector<Datapoint*>*& values, bool isDict)
 {
 m_value.dpa = values;
 m_type = isDict? T_DP_DICT : T_DP_LIST;
 }

 /**
 * Construct with an Image
 */
 DatapointValue(const DPImage& value)
 {
 m_value.image = new DPImage(value);
 m_type = T_IMAGE;
 }

 /**
 * Construct with a DataBuffer
 */
 DatapointValue(const DataBuffer& value)
 {
 m_value.dataBuffer = new DataBuffer(value);
 m_type = T_DATABUFFER;
 }

 /**
 * Construct with an Image Pointer, the
 * image becomes owned by the datapointValue
 */
 DatapointValue(DPImage *value)
 {
 m_value.image = value;
 m_type = T_IMAGE;
 }

 /**
 * Construct with a DataBuffer
 */
 DatapointValue(DataBuffer *value)
 {
 m_value.dataBuffer = value;
 m_type = T_DATABUFFER;
 }

 /**
 * Construct with a 2 dimensional array of floating point values
 */
 DatapointValue(const std::vector< std::vector<double> >& values)
 {
 m_value.a2d = new std::vector< std::vector<double> >();
 for (auto row : values)
 {
 m_value.a2d->push_back(std::vector<double>(row));
 }
 m_type = T_2D_FLOAT_ARRAY;
 };

 /**
 * Copy constructor
 */
 DatapointValue(const DatapointValue& obj);

 /**
 * Assignment Operator
 */
 DatapointValue& operator=(const DatapointValue& rhs);

 /**
 * Destructor
 */
 ~DatapointValue();

 /**
 * Set the value of a datapoint, this may
 * also cause the type to be changed.
 * @param value An integer value to set
 */
 void setValue(long value)
 {
 m_value.i = value;
 m_type = T_INTEGER;
 }

 /**
 * Set the value of a datapoint, this may
 * also cause the type to be changed.
 * @param value A floating point value to set
 */
 void setValue(double value)
 {
 m_value.f = value;
 m_type = T_FLOAT;
 }

 /** Set the value of a datapoint to be an image
 * @param value The image to set in the data point
 */
 void setValue(const DPImage& value)
 {
 m_value.image = new DPImage(value);
 m_type = T_IMAGE;
 }

 /**
 * Return the value as a string
 */
 std::string toString() const;

 /**
 * Return string value without trailing/leading quotes
 */
 std::string toStringValue() const { return *m_value.str; };

 /**
 * Return long value
 */
 long toInt() const { return m_value.i; };
 /**
 * Return double value
 */
 double toDouble() const { return m_value.f; };

 // Supported Data Tag Types
 typedef enum DatapointTag
 {
 T_STRING,
 T_INTEGER,
 T_FLOAT,
 T_FLOAT_ARRAY,
 T_DP_DICT,
 T_DP_LIST,
 T_IMAGE,
 T_DATABUFFER,
 T_2D_FLOAT_ARRAY
 } dataTagType;

 /**
 * Return the Tag type
 */
 dataTagType getType() const
 {
 return m_type;
 }

 std::string getTypeStr() const
 {
 switch(m_type)
 {
 case T_STRING: return std::string("STRING");
 case T_INTEGER: return std::string("INTEGER");
 case T_FLOAT: return std::string("FLOAT");
 case T_FLOAT_ARRAY: return std::string("FLOAT_ARRAY");
 case T_DP_DICT: return std::string("DP_DICT");
 case T_DP_LIST: return std::string("DP_LIST");
 case T_IMAGE: return std::string("IMAGE");
 case T_DATABUFFER: return std::string("DATABUFFER");
 case T_2D_FLOAT_ARRAY: return std::string("2D_FLOAT_ARRAY");
 default: return std::string("INVALID");
 }
 }

 /**
 * Return array of datapoints
 */
 std::vector<Datapoint*>*& getDpVec()
 {
 return m_value.dpa;
 }

 /**
 * Return array of float
 */
 std::vector<double>*& getDpArr()
 {
 return m_value.a;
 }

 /**
 * Return 2D array of float
 */
 std::vector<std::vector<double> >*& getDp2DArr()
 {
 return m_value.a2d;
 }

 /**
 * Return the Image
 */
 DPImage *getImage()
 {
 return m_value.image;
 }

 /**
 * Return the DataBuffer
 */
 DataBuffer *getDataBuffer()
 {
 return m_value.dataBuffer;
 }
};

The DatapointValue can store data in as a number of types

	Type

	C++ Representation

	T_STRING

	Pointer to std::string

	T_INTEGER

	long

	T_FLOAT

	double

	T_FLOAT_ARRAY

	Pointer to std::vector<double>

	T_2D_FLOAT_ARRAY

	Pointer to std::vector<std::vector<double>>

	T_DP_DICT

	Pointer to std::vector<Datapoint *>

	T_DP_LIST

	Pointer to std::vector<Datapoint *>

	T_IMAGE

	Pointer to DPImage

	T_DATABUFFER

	Pointer to DataBuffer

Configuration Category

The ConfigCategory class is a support class for managing configuration information within a plugin and is passed to the plugin entry points. The public definition of the class is as follows;

class ConfigCategory {
 public:
 enum ItemType {
 UnknownType,
 StringItem,
 EnumerationItem,
 JsonItem,
 BoolItem,
 NumberItem,
 DoubleItem,
 ScriptItem,
 CategoryType,
 CodeItem
 };

 ConfigCategory(const std::string& name, const std::string& json);
 ConfigCategory() {};
 ConfigCategory(const ConfigCategory& orig);
 ~ConfigCategory();
 void addItem(const std::string& name, const std::string description,
 const std::string& type, const std::string def,
 const std::string& value);
 void addItem(const std::string& name, const std::string description,
 const std::string def, const std::string& value,
 const std::vector<std::string> options);
 void removeItems();
 void removeItemsType(ItemType type);
 void keepItemsType(ItemType type);
 bool extractSubcategory(ConfigCategory &subCategories);
 void setDescription(const std::string& description);
 std::string getName() const;
 std::string getDescription() const;
 unsigned int getCount() const;
 bool itemExists(const std::string& name) const;
 bool setItemDisplayName(const std::string& name, const std::string& displayName);
 std::string getValue(const std::string& name) const;
 std::string getType(const std::string& name) const;
 std::string getDescription(const std::string& name) const;
 std::string getDefault(const std::string& name) const;
 bool setDefault(const std::string& name, const std::string& value);
 std::string getDisplayName(const std::string& name) const;
 std::vector<std::string> getOptions(const std::string& name) const;
 std::string getLength(const std::string& name) const;
 std::string getMinimum(const std::string& name) const;
 std::string getMaximum(const std::string& name) const;
 bool isString(const std::string& name) const;
 bool isEnumeration(const std::string& name) const;
 bool isJSON(const std::string& name) const;
 bool isBool(const std::string& name) const;
 bool isNumber(const std::string& name) const;
 bool isDouble(const std::string& name) const;
 bool isDeprecated(const std::string& name) const;
 std::string toJSON(const bool full=false) const;
 std::string itemsToJSON(const bool full=false) const;
 ConfigCategory& operator=(ConfigCategory const& rhs);
 ConfigCategory& operator+=(ConfigCategory const& rhs);
 void setItemsValueFromDefault();
 void checkDefaultValuesOnly() const;
 std::string itemToJSON(const std::string& itemName) const;
 enum ItemAttribute { ORDER_ATTR, READONLY_ATTR, MANDATORY_ATTR, FILE_ATTR};
 std::string getItemAttribute(const std::string& itemName,
 ItemAttribute itemAttribute) const;
}

Although ConfigCategory is a complex class, only a few of the methods are commonly used within a plugin

	itemExists: - used to test if an expected configuration item exists within the configuration category.

	getValue: - return the value of a configuration item from within the configuration category

	isBool: - tests if a configuration item is of boolean type

	isNumber: - tests if a configuration item is a number

	isDouble: - tests if a configuration item is valid to be represented as a double

	isString: - tests if a configuration item is a string

Logger

The Logger class is used to write entries to the syslog system within Fledge. A singleton Logger exists which can be obtained using the following code snippet;

Logger *logger = Logger::getLogger();
logger->error("An error has occurred within the plugin processing");

It is then possible to log messages at one of five different log levels; debug, info, warn, error or fatal. Messages may be logged using standard printf formatting strings. The public definition of the Logger class is as follows;

class Logger {
 public:
 Logger(const std::string& application);
 ~Logger();
 static Logger *getLogger();
 void debug(const std::string& msg, ...);
 void printLongString(const std::string&);
 void info(const std::string& msg, ...);
 void warn(const std::string& msg, ...);
 void error(const std::string& msg, ...);
 void fatal(const std::string& msg, ...);
 void setMinLevel(const std::string& level);
};

The various log levels should be used as follows;

	debug: should be used to output messages that are relevant only to a programmer that is debugging the plugin.

	info: should be used for information that is meaningful to the end users, but should not normally be logged.

	warn: should be used for warning messages that will normally be logged but reflect a condition that does not prevent the plugin from operating.

	error: should be used for conditions that cause a temporary failure in processing within the plugin.

	fatal: should be used for conditions that cause the plugin to fail processing permanently, possibly requiring a restart of the microservice in order to resolve.

 Hybrid Plugins

Hybrid Plugins

In addition to plugins written in Python and C/C++ it is possible to have a hybrid plugin that is a combination of an existing plugin and configuration for that plugin. This is useful in a situation whereby there are multiple sensors or devices that you connect to Fledge that have common configuration. It allows devices to be added without repeating the common configuration.

Using our example of a DHT11 sensor connected to a GPIO pin, if we wanted to create a new plugin for a DHT11 that was always connected to pin 4 then we could do this by creating a JSON file as below that supplies a fixed default value for the GPIO pin.

{
 "description" : "A DHT11 sensor connected to GPIO pin 4",
 "name" : "DHT11-4",
 "connection" : "DHT11",
 "defaults" : {
 "pin" : {
 "default" : "4"
 }
 }
}

This creates a new hybrid plugin called DHT11-4 that is installed by copying this file into the plugins/south/DHT11-4 directory of your installation. Once installed it can be treated as any other south plugin within Fledge. The effect of this hybrid plugin is to load the DHT11 plugin and always set the configuration parameter called “pin” to the value “4”. The item “pin” will hidden from the user in the Fledge GUI when they create the instance of the plugin. This allows for a simpler and more streamlined user experience when adding plugins with common configuration.

The items in the JSON file are;

	Name

	Description

	description

	A description of the hybrid plugin. This will appear the right of the selection list in the Fledge user interface when the plugin is selected.

	name

	The name of the plugin itself. This must match the filename of the JSON file and also the name of the directory the file is placed in.

	connection

	The name of the underlying plugin that will be used as the basis for this hybrid plugin. This must be a C/C++ or Python plugin, it can not be another hybrid plugin.

	defaults

	The set of values to default in this hybrid plugin. These are configuration parameters of the underlying plugin that will be fixed in the hybrid plugin. Each hybrid plugin can have one or my values here.

It may not be difficult to enter the GPIO pin in each case in this example, where it becomes more useful is for plugins such as Modbus where a complex map is required to be entered in a JSON document. By using a hybrid plugin we can define the map we need once and then add new sensors of the same type without having to repeat the map. An example of this would be the Flir AX8 camera that require a total of 176 Modbus registers to be mapped into 88 different values in an asset. A hybrid plugin fledge-south-FlirAX8 defines that mapping once and as a result adding a new Flir AX8 camera is as simple as selecting the FlirAX8 hybrid plugin and entering the IP address of the camera.

 North Plugins

North Plugins

North plugins are used in North tasks and micro services to extract data buffered in Fledge and send it Northbound, i.e. to a server or a service in the Cloud or in an Enterprise data center. North plugins may be written in Python or C/C++, a number of different north plugins are available as examples that may be used when creating new plugins.

A north plugin has a limited number of entry points that it much support, these entry points are the same for both Python and C/C++ north plugins.

	Entry Point

	Description

	plugin_info

	Return information about the plugin including the configuration for the plugin. This is the same as plugin_info in all other types of plugin and is part of the standard plugin interface.

	plugin_init

	Also part of the standard plugin interface. This call is passed the request configuration of the plugin and should be used to do any initialization of the plugin.

	plugin_send

	This entry point is the north plugin specific entry point that is used to send data from Fledge. This will be called repeatedly with blocks of readings.

	plugin_shutdown

	Part of the standard plugin interface, this will be called when the plugin is no longer required and will be the final call to the plugin.

	plugin_register

	Register the callback function used for control writes and operations.

The life cycle of a plugin is very similar regardless of if it is written in Python or C/C++, the plugin_info call is made first to determine data about the plugin. The plugin is then initialized by calling the plugin_init entry point. The plugin_send entry point will be called multiple times to send the actual data and finally the plugin_shutdown entry point will be called.

In the following sections each of these calls will be described in detail and samples given in both C/C++ and Python.

Python Plugins

Python plugins are loaded dynamically and executed either within a task, known as the sending_task or north task. This code is implemented in C++ and embedded a Python interpreter that is used to run the Python plugin.

The plugin_info call

The plugin_info call is the first call that will be made to a plugin and is called only once. It is part of the standard plugin interface that is implemented by north, south, filter, notification rule and notification delivery plugins. No arguments are passed to this call and it should return a plugin information structure as a Python dict.

A typical implementation for a simple north plugin simply returns a DICT as follows

def plugin_info():
 """ Used only once when call will be made to a plugin.

 Args:
 Returns:
 Information about the plugin including the configuration for the plugin
 """
 return {
 'name': 'http',
 'version': '1.9.1',
 'type': 'north',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

The items in the structure returned by plugin_info are

	Name

	Description

	name

	The name of the plugin

	version

	The version of the plugin. Typically this is the same as the version of Fledge it is designed to work with but is not constrained to be the same.

	type

	The type of the plugin, in this case the type will always be north

	interface

	The version of the plugin interface that the plugin supports. In this case the version if 1.0

	config

	The DICT that defines the configuration that the plugin has as default.

In the case above _DEFAULT_CONFIG is another Python DICT that contains the defaults for the plugin configuration and will be covered in the Configuration section.

Configuration

Configuration within Fledge is represented in a JSON structure that defines a name, value, default, type and a number of other optional parameters. The configuration process works by the plugins having a default configuration that they return from the plugin_init call. The Fledge configuration code will then combine this with a copy of that configuration that it holds. On the first time a service is created, with no previously held configuration, the configuration manager will take the default values and make those the actual values. The user may then update these to set non-default values. In subsequent executions of the plugin these values will be combined with the defaults to create the in use configuration that is passed to the plugin_init entry point. The mechanism is designed to allow initial execution of a plugin, but also to allow upgrade of a plugin to create new configuration items for the plugins whilst preserving previous configuration values set by the user.

A sample default configuration of http north python based plugin is shown below.

{
 "plugin": {
 "description": "HTTP North Plugin",
 "type": "string",
 "default": "http_north",
 "readonly": "true"
 },
 "url": {
 "description": "Destination URL",
 "type": "string",
 "default": "http://localhost:6683/sensor-reading",
 "order": "1",
 "displayName": "URL"
 },
 "source": {
 "description": "Source of data to be sent on the stream. May be either readings or statistics.",
 "type": "enumeration",
 "default": "readings",
 "options": ["readings", "statistics"],
 "order": "2",
 "displayName": "Source"
 },
 "verifySSL": {
 "description": "Verify SSL certificate",
 "type": "boolean",
 "default": "false",
 "order": "3",
 "displayName": "Verify SSL"
 }
}

Items marked as “readonly” :”true” will not be presented to the user. The displayName and order properties are only used by the user interface to display the configuration item. The description, type and default are used by the API to verify the input and also set the initial values when a new configuration item is created.

Rules can also be given to the user interface to define the validity of configuration items based upon the values of others, or example

{
 "applyFilter": {
 "description": "Should filter be applied before processing data",
 "type": "boolean",
 "default": "false",
 "order": "4",
 "displayName": "Apply Filter"
 },
 "filterRule": {
 "description": "JQ formatted filter to apply (only applicable if applyFilter is True)",
 "type": "string",
 "default": ".[]",
 "order": "5",
 "displayName": "Filter Rule",
 "validity": "applyFilter == \"true\""
 }
}

This will only allow entry to the filterRule configuration item if the applyFilter item has been set to true.

The plugin_init call

The plugin_init call will be invoked after the plugin_info call has been called to obtain the information regarding the plugin. This call is designed to allow the plugin to do any initialization that is required and also creates the handle will is used in all subsequent calls to identify the instance of the plugin.

The plugin_init is passed a Python DICT as the only argument, this DICT contains the modified configuration for the plugin that is created by taking the default plugin configuration returned by plugin_info and adding to that the values the user has configured previously. This is the working configuration that the plugin should use.

The typical implementation of the plugin_init call will create an instance of a Python class which is the main body of the plugin. An object will then be returned which is the handle that will be passed into subsequent calls. This handle in a simple plugin, is commonly a Python DICT that is the configuration of the plugin, however any values may be returned. The caller treats the handle as opaque data that it stores and passed to further calls to the plugin, it will never look inside that object or have any expectations as to what is stored within that object.

The fledge-north-http plugin implementation of plugin_init is shown below as an example

def plugin_init(data):
 """ Used for initialization of a plugin.

 Args:
 data - Plugin configuration
 Returns:
 Dictionary of a Plugin configuration
 """
 global http_north, config
 http_north = HttpNorthPlugin()
 config = data
 return config

In this case the plugin creates an object that implements the functionality and stores that object in a global variable. This can be done as only one instance of the north plugin exists within a single process. It is however perhaps better practice to return the instance of the class in the handle rather than use a global variable. Using a global is not recommended for filter plugins as multiple instances of a filter may exist within a single process. In this case the plugin uses the configuration as the handle it returns.

The plugin_send call

The plugin_send call is the main entry point of a north plugin, it is used to send set of readings north to the destination system. It is responsible for both the communication to that system and the translation of the internal representation of the reading data to the representation required by the external system.

The communication performed by the plugin_send routine should use the Python 3 asynchronous I/O primitives, the definition of the plugin_send entry point must also use the async keyword.

The plugin_send entry point is passed 3 arguments, the plugin handle, the data to send and a stream_id.

async def plugin_send(handle, payload, stream_id):

The handle is the opaque data returned by the call to plugin_init and may be used by the plugin to store data between invocations. The payload is a set of readings that should be sent, see below for more details on payload handling. The stream_id is an integer that uniquely identifies the connection from this Fledge instance to the destination system. This id can be used if the plugin needs to have a unique identifier but in most cases can be ignored.

The plugin_send call returns three values, a boolean that indicates if any data has been sent, the object id of the last reading sent and the number of readings sent.

The code below is the plugin_send entry point for the http north plugin.

async def plugin_send(handle, payload, stream_id):
 """ Used to send the readings block from north to the configured destination.

 Args:
 handle - An object which is returned by plugin_init
 payload - A List of readings block
 stream_id - An Integer that uniquely identifies the connection from Fledge instance to the destination system
 Returns:
 Tuple which consists of
 - A Boolean that indicates if any data has been sent
 - The object id of the last reading which has been sent
 - Total number of readings which has been sent to the configured destination
 """
 try:
 is_data_sent, new_last_object_id, num_sent = await http_north.send_payloads(payload)
 except asyncio.CancelledError:
 pass
 else:
 return is_data_sent, new_last_object_id, num_sent

The plugin_shutdown call

The plugin_shutdown call is the final entry that is required for Python north plugin, it is called by the north service or task just prior to the task terminating or in a north service if the configuration is allowed, see reconfiguration below. The plugin_shutdown call is passed the plugin handle and should perform any cleanup required by the plugin.

def plugin_shutdown(handle):
 """ Used when plugin is no longer required and will be final call to shutdown the plugin. It should do any necessary cleanup if required.

 Args:
 handle - Plugin handle which is returned by plugin_init
 Returns:
 """

The call should not return any data. Once called the handle should no longer be regarded as valid and no further calls will be made to the plugin using this handle.

Reconfiguration

Unlike other plugins within Fledge the north plugins do not have a reconfiguration entry point, this is due to the original nature of the north implementation in Fledge which used short lived tasks in order to send data out the north. Each new execution created a new task with new configuration, it was therefore felt that reconfiguration added a complexity to the north plugins that could be avoided.

Since the introduction of the feature that allows the north to be run as an always on service however this has become an issue. It is resolved by closing down the plugin, calling plugin_shutdown and then restarting by called plugin_init to pass new configuration and retrieve a new plugin handle with that new configuration.

Payload Handling

The payload that is passed to the plugin_send routine is a Python list of readings, each reading is encoded as a Python DICT. The properties of the reading dict are;

	Key

	Description

	id

	The ID of the reading. Each reading is given an integer id that is an increasing value, it is these id values that are used to track how much data is sent via north plugin. One of the returns form the plugin_send routine is the id of the last reading that was successfully sent.

	asset_code

	The asset code of the reading. Typical a south service will generate reading for one or more asset codes. These asset codes are used to identify the source of the data. Multiple asset codes may appear in a single block of readings passed to the plugin_send routine.

	reading

	A nested Python DICT that stores the actual data points associated to the reading. These reading DICT’s will contain a key/value pair for each data point within the asset. The value of this pair is the value of the data point and may be numeric, string, an array, or a nested object.

	ts

	The timestamp when the reading was first seen by the system.

	user_ts

	The timestamp of the data in the reading. This may be the same as ts above or in some cases may be a timestamp that has been received from the source of the data itself. This timestamp is the one that should be considered the most accurately represents the timestamp of the data.

A sample payload is shown below.

[{'reading': {'sinusoid': 0.0}, 'asset_code': 'sinusoid', 'id': 1, 'ts': '2021-09-27 06:55:52.692000+00:00', 'user_ts': '2021-09-27 06:55:49.947058+00:00'},
{'reading': {'sinusoid': 0.104528463}, 'asset_code': 'sinusoid', 'id': 2, 'ts': '2021-09-27 06:55:52.692000+00:00', 'user_ts': '2021-09-27 06:55:50.947110+00:00'}]

C/C++ Plugins

The flow of a C/C++ plugin is very similar to that of a Python plugin, the entry points vary slightly compared to Python, mostly for language reasons.

The plugin_info entry point

The plugin_info is again the first entry point that will be called, in the case a C/C++ plugin it will return a pointer to a PLUGIN_INFORMATION structure, this structure contains the same elements there are seen in the Python DICT that is returned by Python plugins.

static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_NORTH, // Type
 "1.0.0", // Interface version
 default_config // Configuration
}

It should be noted that the PLUGIN_INFORMATION structure instance is declared as static. All global variables declared with a C/C++ plugin should be declared as static as the mechanism for loading the plugins will share global variables between plugins. Using true global variables can create unexpected interactions between plugins.

The items are

	Name

	Description

	name

	The name of the plugin.

	version

	The version of the plugin expressed as a string. This usually but not always matches the current version of Fledge.

	flags

	A bitmap of flags that give extra information about the plugin.

	interface

	The interface version, currently north plugins are at interface version 1.0.0.

	config

	The default configuration for the plugin. In C/C++ plugins this is returned as a string containing the JSON structure.

A number of flags are supported by the plugins, however a small subset are supported in north plugins, this subset consists of

	Name

	Description

	SP_PERSIST_DATA

	The plugin persists data and uses the data persistence API extensions.

	SP_BUILTIN

	The plugin is builtin with the Fledge core package. This should not be used for any user added plugins.

A typical implementation of the plugin_info entry would merely return the PLUGIN_INFORMATION structure for the plugin.

PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

More complex implementations may tailor the content of the information returned based upon some criteria determined at run time. An example of such a scenario might be to tailor the default configuration based upon some element of discovery that occurs at run time. For example if the plugin is designed to send data to another service the plugin_info entry point could perform some service discovery and update a set of options for an enumerated type in the default configuration. This would allow the user interface to give the user a selection list of all the service instances that it found when the plugin was run.

The plugin_init entry point

The plugin_init entry point is called once the configuration of the plugin has been constructed by combining the default configuration with any stored configuration that the user has set for the plugin. The configuration is passed as a pointer to a C++ object of class ConfigCategory. This object may then be used to extract data from the configuration.

The plugin_init call should be used to initialize the plugin itself and to extract the configuration for the ConfigCategory instance and store within the instance of the plugin. Details regarding the use of the ConfigCategory class can be found in the C++ Support Class section of the Plugin Developers Guide. Typically the north plugin will create an instance of a class that implements the functionality required, store the configuration in that class and return a pointer to that instance as the handle for the plugin. This will ensure that subsequent calls can access that class instance and the associated state, since all future calls will be passed the handle as an argument.

The following is perhaps the most generic form of the plugin_init call.

PLUGIN_HANDLE plugin_init(ConfigCategory *configData)
{
 return (PLUGIN_HANDLE)(new myNorthPlugin(configData));
}

In this case it assumes we have a class, myNorthPlugin that implements the functionality of the plugin. The constructor takes the ConfigCategory pointer as an argument and performs all required initialization from that configuration category.

The plugin_send entry point

The plugin_send entry point, as with Python plugins already describe, is the heart of a north plugin. It is called with the plugin handle and a block of readings data to be sent north. Typically the plugin_send will extract the object created in the plugin_init call from the handle and then call the functionality within that object to perform whatever translation and communication logic is required to send the reading data.

uint32_t plugin_send(PLUGIN_HANDLE handle, std::vector<Reading *>& readings)
{
 myNorthPlugin *plugin = (myNorthPlugin *)handle;
 return plugin->send(readings);
}

The block of readings is sent as a C++ standard template library vector of pointers to instance of the Reading class, also covered above in the section on C++ Support Classes.

The return from the plugin_send function should be a count of the number of readings sent by the plugin.

The plugin_shutdown entry point

The plugin_shutdown entry point is called when the plugin is no longer required. It should do any necessary cleanup required. As with other entry points, it is called with the handle that was returned by plugin_init. In the case of our simple plugin that might simple be to delete the C++ object that implements the plugin functionality.

uint32_t plugin_shutdown(PLUGIN_HANDLE handle)
{
 myNorthPlugin *plugin = (myNorthPlugin *)handle;
 delete plugin;
}

The plugin_register entry point

The plugin_register entry point is used to pass two function pointers to the plugin. These functions pointers are the functions that should be called when either a set point write or a set point operation is required. The plugin should store these function pointers for later use.

void plugin_register(PLUGIN_HANDLE handle, (bool (*write)(char *name, char *value, ControlDestination destination, ...), int (* operation)(char *operation, int paramCount, char *parameters[], ControlDestination destination, ...))
{
 myNorthPlugin *plugin = (myNorthPlugin *)handle;
 plugin->setpointCallbacks(write, operation);
}

This call will only be made if the plugin included the SP_CONTROL option in the flags field of the PLUGIN_INFORMATION structure.

Set Point Control

Fledge supports multiple paths for set point control, one of these paths allows for a north service to be bi-directional, with the north plugin receiving a trigger from the system north of Fledge to perform a set point control. This trigger may be the north plugin polling the system or a protocol response from the north.

Set point control is only available for north services, it is not supported for north tasks and will be ignored.

When the north plugin requires a set point write operation to be performed it calls the write callback that was passed to the plugin in the plugin_register entry point. This callback takes a number of arguments;

	The name of the set point to be written.

	The value to write to the set point. This is expressed as a string always.

	The destination of the write operation. This is passed using the ControlDestination enumerated type. Currently this may be one of

	DestinationBroadcast: send the write operation to all south services that support control.

	DestinationAsset: send the write request to the south service responsible for ingesting the given asset. The asset is passed as the next argument in the write call.

	DestinationService: send the write request to the named south service.

For example if the north plugin wishes to write the set point called speed with the value 28 in the south service called Motor Control it would make a call as follows.

(*m_write)("speed", "28", DestinationService, "Motor Control");

Assuming the member variable m_write was used to store the function pointer of the write callback.

If the north plugin requires an operation to be performed, rather than a write, then it should call the operation called which was passed to it in the plugin_register call. This callback takes a set of arguments;

	The name of the operation to execute.

	The number of parameters the operation should be passed.

	An array of parameters, as strings, to pass to the operation

	The destination of the operation, this is the same set of destinations as per the write call.

 Storage Plugins

Storage Plugins

Storage plugins are used to interact with the Storage Microservice and provide the persistent storage of information for Fledge.

The current version of Fledge comes with three storage plugins:

	The SQLite plugin: this is the default plugin and it is used for general purpose storage on constrained devices.

	The SQLite In Memory plugin: this plugin can be used in conjunction with one of the other storage plugins and will provide an in memory storage system for reading data only. Configuration data is stored using the SQLite or PostgreSQL plugins.

	The PostgreSQL plugin: this plugin can be set on request (or it can be built as a default plugin from source) and it is used for a more significant demand of storage on relatively larger systems.

Data and Metadata

Persistency is split in two blocks:

	Metadata persistency: it refers to the storage of metadata for Fledge, such as the configuration of the plugins, the scheduling of jobs and tasks and the the storage of statistical information.

	Data persistency: it refers to the storage of data collected from sensors and devices by the South microservices. The SQLite In Memory plugin is an example of a storage plugin designed to store only the data.

In the current implementation of Fledge, metadata and data use the same Storage plugin by default. Administrators can select different plugins for these two categories of data, with the most common configuration of this type to use the SQLite In Memory storage service for data and SQLite for the metadata. This is set by editing the storage configuration file. Currently there is no interface within Fledge to change the storage configuration.

The storage configuration file is stored in the Fledge data directory as etc/storage.json, the default storage configuration file is

{
 "plugin": {
 "value": "sqlite",
 "description": "The main storage plugin to load"
 },
 "readingPlugin": {
 "value": "",
 "description": "The storage plugin to load for readings data. If blank the main storage plugin is used."
 },
 "threads": {
 "value": "1",
 "description": "The number of threads to run"
 },
 "managedStatus": {
 "value": "false",
 "description": "Control if Fledge should manage the storage provider"
 },
 "port": {
 "value": "0",
 "description": "The port to listen on"
 },
 "managementPort": {
 "value": "0",
 "description": "The management port to listen on."
 }
}

This sets the storage plugin to use as the SQLite plugin and leaves the readingPlugin blank. If the readingPlugin is blank then readings will be stored via the main plugin, if it is populated then a separate plugin will be used to store the readings. As an example, to store the readings in the SQLite In Memory plugin the storage.json file would be

{
 "plugin": {
 "value": "sqlite",
 "description": "The main storage plugin to load"
 },
 "readingPlugin": {
 "value": "sqlitememory",
 "description": "The storage plugin to load for readings data. If blank the main storage plugin is used."
 },
 "threads": {
 "value": "1",
 "description": "The number of threads to run"
 },
 "managedStatus": {
 "value": "false",
 "description": "Control if Fledge should manage the storage provider"
 },
 "port": {
 "value": "0",
 "description": "The port to listen on"
 },
 "managementPort": {
 "value": "0",
 "description": "The management port to listen on."
 }
}

Fledge must be restarted for changes to the storage.json file to take effect.

In addition to the definition of the plugins to use, the storage.json file also has a number of other configuration options for the storage service.

	threads: The number of threads to use to accept incoming REST requests. This is normally set to 1, increasing the number of threads has minimal impact on performance in normal circumstances.

	managedStatus: This configuration option allows Fledge to manage the underlying storage system. If, for example you used a database server and you wished Fledge to start and stop that server as part of the Fledge start up and shut down procedure you would set this option to “true”.

	port: This option can be used to make the storage service listen on a fixed port. This is normally not required, but can be used for diagnostic purposes.

	managementPort: As with port above this can be used for diagnostic purposes to fix the management API port for the storage service.

Common Elements for Storage Plugins

In designing the Storage API and plugins, we have first of all considered that there may be a large number of use cases for data and metadata persistence, therefore we have designed a flexible architecture that poses very few limitations. In practice, this means that developers can build their own Storage plugin and they can rely on anything they want to use as persistent storage. They can use a memory structure, or even a pass-through library, a file, a message queue system, a time series database, a relational database, NoSQL or something else.

After having praised the flexibility of the Storage plugins, let’s provide guidelines about the basic functionality they should provide, bearing in mind that such functionality may not be relevant for some use cases.

	Metadata persistency: As mentioned before, one of the main reasons to use a Storage plugin is to safely store the configuration of the Fledge components. Since the configuration must survive to a system crash or reboot, it is fair to say that such information should be stored in one or more files or in a database system.

	Data buffering: The second most important feature of a Storage plugin is the ability to buffer (or store) data coming from the outside world, typically from the South microservices. In some cases this feature may not be necessary, since administrators may want to send data to other systems as soon as possible, using a North task of microservice. Even in situations where data can be sent up North instantaneously, you should consider these scenarios:

	Fledge may be installed in areas where the network is unreliable. The North plugins will provide the logic of retrying to gain connectivity and resending data when the connection has been lost in the middle of the transfer operations.

	North services may rely on the use of networks that provide time windows to operate.

	Historians and other systems may work better when data is transferred in blocks instead of a constant streaming.

	Data purging: Data may persist for the time needed by any specific use case, but it is pretty common that after a while (it can be seconds or minutes, but also day or months) data is no longer needed in Fledge. For this reason, the Storage plugin is able to purge data. Purging may be by time or by space usage, in conjunction with the fact that data may have been already transferred to other systems.

	Data backup/restore: Data, but especially metadata (i.e. configuration), can be backed up and stored safely on other systems. In case of crash and recovery, the same data may be restored into Fledge. Fledge provides a set of generic API to execute backup and restore operations.

 Filter Plugins

Filter Plugins

Filter plugins provide a mechanism to alter the data stream as it flows
through a fledge instance, filters may be applied in south or north
micro-services and may form a pipeline of multiple processing elements
through which the data flows. Filters applied in a south service will only
process data that is received by the south service, whilst filters placed
in the north will process all data that flows out of that north interface.

Filters may;

	augment data by adding static metadata or calculated values to the data

	remove data from the stream

	add data to the stream

	modify data in the stream

It should be noted that there are some alternatives to creating a filter
if you wish to make simple changes to the data stream. There are a number of
existing filters that provide a degree of programmability. These include
the expression filter which allows an arbitrary mathematical formula
to be applied to the data or the Python 3.5 filter which allows a
small include Python script to be applied to the data.

Filter plugins may be written in C++ or Python and have a very simple interface. The plugin mechanism and a subset of the API is common between all types of plugins including filters.

Configuration

Filters use the same configuration mechanism as the rest of Fledge,
using a JSON document to describe the configuration parameters. As with
any other plugin the structure is defined by the plugin and retrieve
by the plugin_info entry point. This is then matched with the database
content to pass the configured values to the plugin_init entry point.

C++ Filter Plugin API

The filter API consists of a small number of C function entry points,
these are called in a strict order and based on the same set of common
API entry points for all Fledge plugins.

Plugin Information

The plugin_info entry point is the first entry point that is called
in a filter plugin and returns the plugin information structure. This is
the exact same call that every Fledge plugin must support and is used to
determine the type of the plugin and the configuration category defaults
for the plugin.

A typical implementation of plugin_info would merely return a pointer
to a static PLUGIN_INFORMATION structure.

PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

Plugin Initialise

The plugin_init entry point is called after plugin_info has been called and before any data is passed to the filter. It is called at the phase where the service is setting up the filter pipeline and provides the filter with its configuration category that now contains the user supplied values and the destination to which the filter will send the output of the filter.

PLUGIN_HANDLE plugin_init(ConfigCategory* config,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output)
{
}

The config parameter is the configuration category with the user supplied
values inserted, the outHandle is a handle for the next filter in the
chain and the output is a function pointer to call to send the data
to the next filter in the chain. The outHandle and output arguments
should be stored for future use in the plugin_ingest when data is to
be forwarded within the pipeline.

The plugin_init function returns a handle that will be passed to all
subsequent plugin calls. This handle can be used to store state that
needs to be passed between calls. Typically the plugin_init call will
create a C++ class that implements the filter and return a point to the
instance as the handle. The instance can then be used to store the state
of the filter, including the output handle and callback that needs to
be used.

Filter classes can also be used to buffer data between calls to the
plugin_ingest entry point, allowing a filter to defer the processing
of the data until it has a sufficient quantity of buffered data available
to it.

Plugin Ingest

The plugin_ingest entry point is the workhorse of the filter, it is
called with sets of readings to process and then passes on the new set
of readings to the next filter in the pipeline. The process of passing on
the data to the next filter is via the OUTPUT_STREAM function pointer. A
filter does not have to output data each time it ingests data, it is free
to output no data or to output more or less data than it was called with.

void plugin_ingest(PLUGIN_HANDLE *handle,
 READINGSET *readingSet)
{
}

The number of readings that a filter is called with will depend on the
environment it is run in and what any filters earlier in the filter
pipeline have produced. A filter that requires a particular sample size
in order to process a result should therefore be prepared to buffer data
across multiple calls to plugin_ingest. Several examples of filters
that so this are available for reference.

The plugin_ingest call may send data onwards in the filter pipeline
by using the stored output and outHandle parameters passed to
plugin_init.

(*output)(outHandle, readings);

Plugin Reconfigure

As with other plugin types the filter may be reconfigured during its
lifetime. When a reconfiguration operation occurs the plugin_reconfigure
method will be called with the new configuration for the filter.

void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
}

Plugin Shutdown

As with other plugins a shutdown call exists which may be used by
the plugin to perform any cleanup that is required when the filter is
shut down.

void plugin_shutdown(PLUGIN_HANDLE *handle)
{
}

C++ Helper Class

It is expected that filters will be written as C++ classes, with the
plugin handle being used a a mechanism to store and pass the pointer to
the instance of the filter class. In order to make it easier to write
filters a base FledgeFilter class has been provided, it is recommended
that you derive your specific filter class from this base class in order
to simplify the implementation

class FledgeFilter {
 public:
 FledgeFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output);
 ~FledgeFilter() {};
 const std::string&
 getName() const { return m_name; };
 bool isEnabled() const { return m_enabled; };
 ConfigCategory& getConfig() { return m_config; };
 void disableFilter() { m_enabled = false; };
 void setConfig(const std::string& newConfig);
 public:
 OUTPUT_HANDLE* m_data;
 OUTPUT_STREAM m_func;
 protected:
 std::string m_name;
 ConfigCategory m_config;
 bool m_enabled;
};

C++ Filter Example

The following example is a simple data processing example. It applies the log() function to numeric data in the data stream

Plugin Interface

Most plugins written in C++ have a source file that encapsulates the C API to the plugin, this is traditionally called plugin.cpp. The example plugin follows this model with the content of plugin.cpp shown below.

The first section includes the filter class that is the actual implementation of the filter logic and defines the JSON configuration category. This uses the QUOTE macro in order to make the JSON definition more readable.

/*
 * Fledge "log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */

#include <logFilter.h>
#include <version.h>

#define FILTER_NAME "log"
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "Log filter plugin",
 "type" : "string",
 "default" : FILTER_NAME,
 "readonly": "true"
 },
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the log filter.",
 "type": "boolean",
 "displayName": "Enabled",
 "default": "false"
 },
 "match" : {
 "description" : "An optional regular expression to match in the asset name.",
 "type": "string",
 "default": "",
 "order": "1",
 "displayName": "Asset filter"}
 });

using namespace std;

We then define the plugin information contents that will be returned by the plugin_info call.

/**
 * The Filter plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 FILTER_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_FILTER, // Type
 "1.0.0", // Interface version
 default_config // Default plugin configuration
};

The final section of this file consists of the entry points themselves
and the implementation. The majority of this consist of calls to the
LogFilter class that in this case implements the logic of the filter.

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle.
 * We merely create an instance of our LogFilter class
 *
 * @param config The configuration category for the filter
 * @param outHandle A handle that will be passed to the output stream
 * @param output The output stream (function pointer) to which data is passed
 * @return An opaque handle that is used in all subsequent calls to the plugin
 */
PLUGIN_HANDLE plugin_init(ConfigCategory* config,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output)
{
 LogFilter *log = new LogFilter(FILTER_NAME,
 *config,
 outHandle,
 output);

 return (PLUGIN_HANDLE)log;
}

/**
 * Ingest a set of readings into the plugin for processing
 *
 * @param handle The plugin handle returned from plugin_init
 * @param readingSet The readings to process
 */
void plugin_ingest(PLUGIN_HANDLE *handle,
 READINGSET *readingSet)
{
 LogFilter *log = (LogFilter *) handle;
 log->ingest(readingSet);
}

/**
 * Plugin reconfiguration method
 *
 * @param handle The plugin handle
 * @param newConfig The updated configuration
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
 LogFilter *log = (LogFilter *)handle;
 log->reconfigure(newConfig);
}

/**
 * Call the shutdown method in the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 LogFilter *log = (LogFilter *) handle;
 delete log;
}

// End of extern "C"
};

Filter Class

Although it is not mandatory it is good practice to encapsulate the filter login in a class, these classes are derived from the FledgeFilter class

#ifndef _LOG_FILTER_H
#define _LOG_FILTER_H
/*
 * Fledge "Log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */
#include <filter.h>
#include <reading_set.h>
#include <config_category.h>
#include <string>
#include <logger.h>
#include <mutex>
#include <regex>
#include <math.h>

/**
 * Convert the incoming data to use a logarithmic scale
 */
class LogFilter : public FledgeFilter {
 public:
 LogFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output);
 ~LogFilter();
 void ingest(READINGSET *readingSet);
 void reconfigure(const std::string& newConfig);
 private:
 void handleConfig(ConfigCategory& config);
 std::string m_match;
 std::regex *m_regex;
 std::mutex m_configMutex;
};

#endif

Filter Class Implementation

The following is the code that implements the filter logic

/*
 * Fledge "Log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */
#include <logFilter.h>

using namespace std;

/**
 * Constructor for the LogFilter.
 *
 * We call the constructor of the base class and handle the initial
 * configuration of the filter.
 *
 * @param filterName The name of the filter
 * @param filterConfig The configuration category for this filter
 * @param outHandle The handle of the next filter in the chain
 * @param output A function pointer to call to output data to the next filter
 */
LogFilter::LogFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output) : m_regex(NULL),
 FledgeFilter(filterName, filterConfig, outHandle, output)
{
 handleConfig(filterConfig);
}

/**
 * Destructor for this filter class
 */
LogFilter::~LogFilter()
{
 if (m_regex)
 delete m_regex;
}

/**
 * The actual filtering code
 *
 * @param readingSet The reading data to filter
 */
void
LogFilter::ingest(READINGSET *readingSet)
{
 lock_guard<mutex> guard(m_configMutex);

 if (isEnabled()) // Filter enable, process the readings
 {
 const vector<Reading *>& readings = ((ReadingSet *)readingSet)->getAllReadings();
 for (vector<Reading *>::const_iterator elem = readings.begin();
 elem != readings.end(); ++elem)
 {
 // If we set a matching regex then compare to the name of this asset
 if (!m_match.empty())
 {
 string asset = (*elem)->getAssetName();
 if (!regex_match(asset, *m_regex))
 {
 continue;
 }
 }

 // We are modifying this asset so put an entry in the asset tracker
 AssetTracker::getAssetTracker()->addAssetTrackingTuple(getName(), (*elem)->getAssetName(), string("Filter"));

 // Get a reading DataPoints
 const vector<Datapoint *>& dataPoints = (*elem)->getReadingData();

 // Iterate over the datapoints
 for (vector<Datapoint *>::const_iterator it = dataPoints.begin(); it != dataPoints.end(); ++it)
 {
 // Get the reference to a DataPointValue
 DatapointValue& value = (*it)->getData();

 /*
 * Deal with the T_INTEGER and T_FLOAT types.
 * Try to preserve the type if possible but
 * if a floating point log function is applied
 * then T_INTEGER values will turn into T_FLOAT.
 * If the value is zero we do not apply the log function
 */
 if (value.getType() == DatapointValue::T_INTEGER)
 {
 long ival = value.toInt();
 if (ival != 0)
 {
 double newValue = log((double)ival);
 value.setValue(newValue);
 }
 }
 else if (value.getType() == DatapointValue::T_FLOAT)
 {
 double dval = value.toDouble();
 if (dval != 0.0)
 {
 value.setValue(log(dval));
 }
 }
 else
 {
 // do nothing for other types
 }
 }
 }
 }

 // Pass on all readings in this case
 (*m_func)(m_data, readingSet);
}

/**
 * Reconfiguration entry point to the filter.
 *
 * This method runs holding the configMutex to prevent
 * ingest using the regex class that may be destroyed by this
 * call.
 *
 * Pass the configuration to the base FilterPlugin class and
 * then call the private method to handle the filter specific
 * configuration.
 *
 * @param newConfig The JSON of the new configuration
 */
void
LogFilter::reconfigure(const std::string& newConfig)
{
 lock_guard<mutex> guard(m_configMutex);
 setConfig(newConfig); // Pass the configuration to the base class
 handleConfig(m_config);
}

/**
 * Handle the filter specific configuration. In this case
 * it is just the single item "match" that is a regex
 * expression
 *
 * @param config The configuration category
 */
void
LogFilter::handleConfig(ConfigCategory& config)
{
 if (config.itemExists("match"))
 {
 m_match = config.getValue("match");
 if (m_regex)
 delete m_regex;
 m_regex = new regex(m_match);
 }
}

Python Filter API

Filters may also be written in Python, the API is very similar to that of a C++ filter and consists of the same set of entry points.

Plugin Information

As with C++ filters this is the first entry point called, it returns a Python dictionary that describes the filter.

def plugin_info():
 """ Returns information about the plugin
 Args:
 Returns:
 dict: plugin information
 Raises:
 """

Plugin Initialisation

The plugin_init call is used to pass the resolved configuration to the
plugin and also pass in the handle of the next filter in the pipeline
and a callback that should be called with the output data of the filter.

def plugin_init(config, ingest_ref, callback):
 """ Initialise the plugin
 Args:
 config: JSON configuration document for the Filter plugin configuration category
 ingest_ref: filter ingest reference
 callback: filter callback
 Returns:
 data: JSON object to be used in future calls to the plugin
 Raises:
 """

Plugin Ingestion

The plugin_ingest method is used to pass data into the plugin, the plugin will then process that data and call the callback that was passed into the plugin_init entry point with the ingest_ref handle and the data to send along the filter pipeline.

def plugin_ingest(handle, data):
 """ Modify readings data and pass it onward

 Args:
 handle: handle returned by the plugin initialisation call
 data: readings data
 """

The data is arranged as an array of Python dictionaries, each of which is a Reading. Typically the data can be processed by traversing the array

for elem in data:
 process(elem)

Plugin Reconfigure

The plugin_reconfigure entry point is called whenever a configuration change occurs for the filters configuration category.

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 """

Plugin Shutdown

Called when the plugin is to be shutdown to allow it to perform any cleanup operations.

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 plugin shutdown
 """

Python Filter Example

The following is an example of a Python filter that calculates an exponential moving average.

-*- coding: utf-8 -*-

Fledge_BEGIN
See: http://fledge-iot.readthedocs.io/
Fledge_END

""" Module for EMA filter plugin

Generate Exponential Moving Average
The rate value (x) allows to include x% of current value
and (100-x)% of history
A datapoint called 'ema' is added to each reading being filtered
"""

import time
import copy
import logging

from fledge.common import logger
import filter_ingest

__author__ = "Massimiliano Pinto"
__copyright__ = "Copyright (c) 2022 Dianomic Systems Inc."
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_LOGGER = logger.setup(__name__, level = logging.INFO)

PLUGIN_NAME = 'ema'

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Exponential Moving Average filter plugin',
 'type': 'string',
 'default': PLUGIN_NAME,
 'readonly': 'true'
 },
 'enable': {
 'description': 'Enable ema plugin',
 'type': 'boolean',
 'default': 'false',
 'displayName': 'Enabled',
 'order': "3"
 },
 'rate': {
 'description': 'Rate value: include % of current value',
 'type': 'float',
 'default': '0.07',
 'displayName': 'Rate',
 'order': "2"
 },
 'datapoint': {
 'description': 'Datapoint name for calculated ema value',
 'type': 'string',
 'default': PLUGIN_NAME,
 'displayName': 'EMA datapoint',
 'order': "1"
 }
}

def compute_ema(handle, reading):
 """ Compute EMA

 Args:
 A reading data
 """
 rate = float(handle['rate']['value'])
 for attribute in list(reading):
 if not handle['latest']:
 handle['latest'] = reading[attribute]
 handle['latest'] = reading[attribute] * rate + handle['latest'] * (1 - rate)
 reading[handle['datapoint']['value']] = handle['latest']

def plugin_info():
 """ Returns information about the plugin
 Args:
 Returns:
 dict: plugin information
 Raises:
 """
 return {
 'name': PLUGIN_NAME,
 'version': '1.9.2',
 'mode': 'none',
 'type': 'filter',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config, ingest_ref, callback):
 """ Initialise the plugin
 Args:
 config: JSON configuration document for the Filter plugin configuration category
 ingest_ref: filter ingest reference
 callback: filter callback
 Returns:
 data: JSON object to be used in future calls to the plugin
 Raises:
 """
 _config = copy.deepcopy(config)
 _config['ingestRef'] = ingest_ref
 _config['callback'] = callback
 _config['latest'] = None
 _config['shutdownInProgress'] = False
 return _config

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 """
 _LOGGER.info("Old config for ema plugin {} \n new config {}".format(handle, new_config))

 new_handle = copy.deepcopy(new_config)
 new_handle['shutdownInProgress'] = False
 new_handle['latest'] = None
 new_handle['ingestRef'] = handle['ingestRef']
 new_handle['callback'] = handle['callback']
 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 plugin shutdown
 """
 handle['shutdownInProgress'] = True
 time.sleep(1)
 handle['callback'] = None
 handle['ingestRef'] = None
 handle['latest'] = None

 _LOGGER.info('{} filter plugin shutdown.'.format(PLUGIN_NAME))

def plugin_ingest(handle, data):
 """ Modify readings data and pass it onward

 Args:
 handle: handle returned by the plugin initialisation call
 data: readings data
 """
 if handle['shutdownInProgress']:
 return

 if handle['enable']['value'] == 'false':
 # Filter not enabled, just pass data onwards
 filter_ingest.filter_ingest_callback(handle['callback'], handle['ingestRef'], data)
 return

 # Filter is enabled: compute EMA for each reading
 for elem in data:
 compute_ema(handle, elem['readings'])

 # Pass data onwards
 filter_ingest.filter_ingest_callback(handle['callback'], handle['ingestRef'], data)

 _LOGGER.debug("{} filter_ingest done.".format(PLUGIN_NAME))

 Notification Delivery Plugins

Notification Delivery Plugins

Notification delivery plugins are used by the notification system to
send a notification to some other system or device. They are the transport
that allows the event to be notified to that other system or device.

Notification delivery plugins may be written in C or C++ and have a very
simple interface. The plugin mechanism and a subset of the API is common
between all types of plugins including filters. This documentation is based
on the MQTT notification delivery source code. The MQTT delivery plugin sends MQTT messages to a configurable MQTT topic
when a notification is triggered and cleared.

Configuration

Notification Delivery plugins use the same configuration mechanism as the rest of
Fledge, using a JSON document to describe the configuration parameters. As
with any other plugin the structure is defined by the plugin and retrieve
by the plugin_info entry point. This is then matched with the database
content to pass the configured values to the plugin_init entry point.

Notification Delivery Plugin API

The notification delivery plugin API consists of a small number of C
function entry points, these are called in a strict order and based on
the same set of common API entry points for all Fledge plugins.

Plugin Information

The plugin_info entry point is the first entry point that is called
in a notification delivery plugin and returns the plugin information
structure. This is the exact same call that every Fledge plugin
must support and is used to determine the type of the plugin and the
configuration category defaults for the plugin.

A typical implementation of plugin_info would merely return a pointer
to a static PLUGIN_INFORMATION structure.

PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

Plugin Initialise

The second call that is made to the plugin is the plugin_init call, that is used to retrieve a handle on the plugin instance and to configure the plugin.

PLUGIN_HANDLE plugin_init(ConfigCategory* config)
{
 MQTT *mqtt = new MQTT(config);
 return (PLUGIN_HANDLE)mqtt;
}

The config parameter is the configuration category with the user supplied
values inserted, these values are used to configure the behavior of the
plugin. In the case of our MQTT example we use this to call the constructor
of our MQTT class.

/**
 * Construct a MQTT notification plugin
 *
 * @param category The configuration of the plugin
 */
MQTT::MQTT(ConfigCategory *category)
{
 if (category->itemExists("broker"))
 m_broker = category->getValue("broker");
 if (category->itemExists("topic"))
 m_topic = category->getValue("topic");
 if (category->itemExists("trigger_payload"))
 m_trigger = category->getValue("trigger_payload");
 if (category->itemExists("clear_payload"))
 m_clear = category->getValue("clear_payload");
}

This constructor merely stores values out of the configuration category
as private member variables of the MQTT class.

We return the pointer to our MQTT class as the handle for the plugin. This
allows subsequent calls to the plugin to reference the instance created
by the plugin_init call.

Plugin Delivery

This is the API call made whenever the plugin needs to send a triggered or cleared notification state. It may be called multiple times within the lifetime of a plugin.

bool plugin_deliver(PLUGIN_HANDLE handle,
 const std::string& deliveryName,
 const std::string& notificationName,
 const std::string& triggerReason,
 const std::string& message)
{
 MQTT *mqtt = (MQTT *)handle;
 return mqtt->notify(notificationName, triggerReason, message);
}

The delivery call is passed the handle, which gives us the MQTT class
instance on this case, the name of the notification, a trigger reason,
which is a JSON document and a message. The trigger reason JSON document
contains information about why the delivery call was made, including the
triggered or cleared status, the timestamp of the reading that caused
the notification to trigger and the name of the asset or assets involved
in the notification rule that triggered this delivery event.

{
 "reason": "triggered",
 "asset": ["sinusoid"],
 "timestamp": "2020-11-18 11:52:33.960530+00:00"
}

The return from the plugin_deliver entry point is a boolean that
indicates if the delivery succeeded or not.

In the case of our MQTT example we call the notify method of the class,
this then interacts with the MQTT broker.

/**
 * Send a notification via MQTT broker
 *
 * @param notificationName The name of this notification
 * @param triggerReason Why the notification is being sent
 * @param message The message to send
 */
bool MQTT::notify(const string& notificationName, const string& triggerReason, const string& message)
{
string payload = m_trigger;
MQTTClient client;

 lock_guard<mutex> guard(m_mutex);

 // Parse the JSON that represents the reason data
 Document doc;
 doc.Parse(triggerReason.c_str());
 if (!doc.HasParseError() && doc.HasMember("reason"))
 {
 if (!strcmp(doc["reason"].GetString(), "cleared"))
 payload = m_clear;
 }

 // Connect to the MQTT broker
 MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
 MQTTClient_message pubmsg = MQTTClient_message_initializer;
 MQTTClient_deliveryToken token;
 int rc;

 if ((rc = MQTTClient_create(&client, m_broker.c_str(), CLIENTID,
 MQTTCLIENT_PERSISTENCE_NONE, NULL)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to create client, return code %d\n", rc);
 return false;
 }

 conn_opts.keepAliveInterval = 20;
 conn_opts.cleansession = 1;
 if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to connect, return code %d\n", rc);
 return false;
 }

 // Construct the payload
 pubmsg.payload = (void *)payload.c_str();
 pubmsg.payloadlen = payload.length();
 pubmsg.qos = 1;
 pubmsg.retained = 0;

 // Publish the message
 if ((rc = MQTTClient_publishMessage(client, m_topic.c_str(), &pubmsg, &token)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to publish message, return code %d\n", rc);
 return false;
 }

 // Wait for completion and disconnect
 rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
 if ((rc = MQTTClient_disconnect(client, 10000)) != MQTTCLIENT_SUCCESS)
 Logger::getLogger()->error("Failed to disconnect, return code %d\n", rc);
 MQTTClient_destroy(&client);
 return true;
}

Plugin Reconfigure

As with other plugin types the notification delivery plugin may be
reconfigured during its lifetime. When a reconfiguration operation occurs
the plugin_reconfigure method will be called with the new configuration
for the plugin.

void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
 MQTT *mqtt = (MQTT *)handle;
 mqtt->reconfigure(newConfig);
 return;
}

In the case of our MQTT example we call the reconfigure method of our
MQTT class. In this method the new values are copied into the local
member variables of the instance.

/**
 * Reconfigure the MQTT delivery plugin
 *
 * @param newConfig The new configuration
 */
void MQTT::reconfigure(const string& newConfig)
{
 ConfigCategory category("new", newConfig);
 lock_guard<mutex> guard(m_mutex);
 m_broker = category.getValue("broker");
 m_topic = category.getValue("topic");
 m_trigger = category.getValue("trigger_payload");
 m_clear = category.getValue("clear_payload");
}

The mutex is used here to prevent the plugin reconfiguration occurring
when we are delivering a notification. The same mutex is held in the
notify method of the MQTT class.

Plugin Shutdown

As with other plugins a shutdown call exists which may be used by
the plugin to perform any cleanup that is required when the plugin is
shut down.

void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 MQTT *mqtt = (MQTT *)handle;
 delete mqtt;
}

In the case of our MQTT example we merely destroy the instance of the
MQTT class and allow the destructor of that class to do any cleanup that
is required. In the case of this example there is no cleanup required.

 Plugin Packaging

Plugin Packaging

There are as set of files that must exist within the repository of a plugin that are used to create the package for that plugin on the various supported platforms. The following documents what those files are and what they should contain.

Common files

	Description - It should contain a brief description of the plugin and will be used as the description for the package that is created. Also make sure description of plugin must be in a single line as of now we do not have support multi lines yet.

	Package - This is the main file where we define set of variables.

	plugin_name - Name of the Plugin.

	plugin_type - Type of the Plugin.

	plugin_install_dirname - Installed Directory name.

	plugin_package_name (Optional) - Name of the Package. If it is not given then the package name should be same as plugin name.

	requirements - Runtime Architecture specific packages list and should have comma separated values without any space.

Note

For C-based plugins if a plugin requires some additional libraries to install with then set additional_libs variable inside Package file. And the value must be with following contract:

additional_libs=”DIRECTORY_NAME:FILE_NAME” - in case of single
additional_libs=”DIRECTORY_NAME:FILE_NAME1,DIRECTORY_NAME:FILE_NAME2” - in case of multiple use comma separated with both directory & file name

	service_notification.version - It is only required if the plugin is a notification rule or notification delivery plugin. It contains the minimum version of the notification service which the plugin requires.

C based Plugins

	VERSION - It contains the version number of the plugin and is used by the build process to include the version number within the code and also within the name of the package file created.

	fledge.version - It contains the minimum version number of Fledge required by the plugin.

	requirements.sh (Optional) - It is used to install any additional libraries or other artifacts that are need to build the plugin. It takes the form of a shell script. This script, if it exists, will be run as a part of the process of building the plugin before the cmake command is issued in the build process.

	extras_install.sh (Optional) - It is a shell script that is added to the package to allow for extra commands to be executed as part of the package installation. Not all plugins will require this file to be present and it can be omitted if there are no extra steps required on the installation.

Examples of filename along with content

	VERSION

$ cat VERSION
1.9.2

	fledge.version

$ cat fledge.version
fledge_version>=1.9

	requirements.sh

$ cat requirements.sh
#!/usr/bin/env bash
which apt >/dev/null 2>&1
if [$? -eq 0]; then
 sudo apt install -y libmodbus-dev
else
 which yum >/dev/null 2>&1
 if [$? -eq 0]; then
 sudo yum -y install epel-release libmodbus libmodbus-devel
 fi
fi

	Description

$ cat Description
Fledge modbus plugin. Supports modbus RTU and modbus TCP.

	Package

$ cat Package
A set of variables that define how we package this repository
#
plugin_name=modbus
plugin_type=south
plugin_install_dirname=ModbusC
plugin_package_name=fledge-south-modbus
additional_libs="usr/local/lib:/usr/local/lib/libsmod.so*"

Now build up the runtime requirements list. This has 3 components
1. Generic packages we depend on in all architectures and package managers
2. Architecture specific packages we depend on
3. Package manager specific packages we depend on
requirements="fledge"

case "$arch" in
 x84_64)
 ;;
 armv7l)
 ;;
 aarch64)
 ;;
esac
case "$package_manager" in
 deb)
 requirements="${requirements},libmodbus-dev"
 ;;
esac

Note

If your package is not supported for a specific platform then you must exit with exitcode 1.

	service_notification.version

$ cat service_notification.version
service_notification_version>=1.9.2

Common Additional Libraries Package

Below are the packages which created a part of the process of building Fledge that are commonly used in plugins.

	fledge-mqtt which is a packaged version of the libpaho-mqtt library.

	fledge-gcp which is a packaged version of the libjwt and libjansson libraries.

	fledge-iec which is a packaged version of the IEC 60870 and IEC 61850 libraries.

	fledge-s2opcua which is a packaged version of libexpat and libs2opc libraries.

If your plugin depends on any of these libraries they should be added to the requirements variable in the Package file rather than adding them as additional_libs since the version of these is managed by the Fledge build and packaging process. Below is the example

requirements="fledge,fledge-s2opcua"

Python based Plugins

	VERSION.{PLUGIN_TYPE}.{PLUGIN_NAME} - It contains the packaged version of the plugin and also the minimum fledge version that the plugin requires.

	install_notes.txt (Optional) - It is a simple text file that can be included if there are specific instructions required to be given during the installation of the plugin. These notes will be displayed at the end of the installation process for the package.

	extras_install.sh (Optional) - It is a shell script that is added to the package to allow for extra commands to be executed as part of the package installation. Not all plugins will require this file to be present and it can be omitted if there are no extra steps required on the installation.

	requirements-{PLUGIN_NAME}.txt (Optional) - It is a simple text file that can be included if there are pip dependencies required to be given during the installation of the plugin. Also make sure file should be placed inside python directory.

Examples of filename along with content

	Description

$ cat Description
Fledge South Sinusoid plugin

	Package

$ cat Package
A set of variables that define how we package this repository
#
plugin_name=sinusoid
plugin_type=south
plugin_install_dirname=sinusoid

Now build up the runtime requirements list. This has 3 components
1. Generic packages we depend on in all architectures and package managers
2. Architecture specific packages we depend on
3. Package manager specific packages we depend on
requirements="fledge"

case "$arch" in
 x86_64)
 ;;
 armv7l)
 ;;
 aarch64)
 ;;
esac
case "$package_manager" in
 deb)
 ;;
esac

Note

If your package is not supported for a specific platform then you must exit with exitcode 1.

	VERSION.{PLUGIN_TYPE}.{PLUGIN_NAME}

$ cat VERSION.south.sinusoid
fledge_south_sinusoid_version=1.9.2
fledge_version>=1.9

	install_notes.txt

$ cat install_notes.txt
It is required to reboot the RPi, please do the following steps:
1) sudo reboot

	extras_install.sh

#!/usr/bin/env bash

os_name=$(grep -o '^NAME=.*' /etc/os-release | cut -f2 -d\" | sed 's/"//g')
os_version=$(grep -o '^VERSION_ID=.*' /etc/os-release | cut -f2 -d\" | sed 's/"//g')
echo "Platform is ${os_name}, Version: ${os_version}"
arch=`arch`
ID=$(cat /etc/os-release | grep -w ID | cut -f2 -d"=")
if [${ID} != "mendel"]; then
case $os_name in
 "Ubuntu")
 if [${arch} = "aarch64"]; then
 python3 -m pip install --upgrade pip
 fi
 ;;

 esac
fi

	requirements-{PLUGIN_NAME}.txt

$ cat python/requirements-modbustcp.txt
pymodbus3==1.0.0

Building A Package

Firstly you need to clone the repository fledge-pkg [https://github.com/fledge-iot/fledge-pkg]. Now do the following steps

$ cd plugins
$./make_deb -b <BRANCH_NAME> <REPOSITORY_NAME>

if everything goes well with above command then you can find your package inside archive directory.

$ ls archive

 Testing Your Plugin

Testing Your Plugin

The first step in testing your new plugin is to put the plugin in the
location in which your Fledge system will be loading it from. The exact
location depends on the way your installed you Fledge system and the
type of plugin.

If your Fledge system was installed from a package and you used the
default installation path, then your plugin must be stored under the
directory /usr/local/fledge. If you installed Fledge in a nonstandard
location or your have built it from the source code, then the plugin
should be stored under the directory $FLEDGE_ROOT.

A C/C++ plugin or a hybrid plugin should be placed in the directory
plugins/<type>/<plugin name> under the installed directory
described above. Where <type> is one of south, filter, north,
notificationRule or notificationDelivery. And <plugin name> is
the name you gave your plugin.

A south plugin written in C/C++ and called DHT11, for a system
installed from a package, would be installed in a directory called
/usr/local/fledge/plugins/south/DHT11. Within that directory Fledge
would expect to find a file called libDHT11.so.

A south hybrid plugin called MD1421, for a development system built from
source would be installed in ${FLEDGE_ROOT}/plugins/south/MD1421. In
this directory a JSON file called MD1421.json should exist, this is
what the system will read to create the plugin.

A Python plugin should be installed in the directory
python/fledge/plugins/<plugin type>/<plugin name> under the installed
directory described above. Where <type> is one of south, filter,
north, notificationRule or notificationDelivery. And <plugin name>
is the name you gave your plugin.

A Python filter plugin called normalise, on a system installed from
a package in the default location should be copied into a directory
/usr/local/fledge/python/fledge/plugins/filter/normalise. Within
this directory should be a file called normalise.py and an empty file
called __init__.py.

Initial Testing

After you have copied your plugin into the correct location
you can test if Fledge is able to see it by running the API call
/fledge/plugins/installed. This will list all the installed plugins
and their versions.

$ curl http://localhost:8081/fledge/plugins/installed | jq
{
 "plugins": [
 {
 "name": "http_north",
 "type": "north",
 "description": "HTTP North Plugin",
 "version": "1.8.1",
 "installedDirectory": "north/http_north",
 "packageName": "fledge-north-http-north"
 },
 {
 "name": "GCP",
 "type": "north",
 "description": "Google Cloud Platform IoT-Core",
 "version": "1.8.1",
 "installedDirectory": "north/GCP",
 "packageName": "fledge-north-gcp"
 },
...
}

Note, in the above example the jq program has been used to format the
returned JSON and the output has been truncated for brevity.

If your plugin does not appear it may be because there was a problem
loading it or because the plugin_info call returned a bad value. Examine
the syslog file to see if there are any errors recorded during the above
API call.

C/C++ Common Faults

Common faults for C/C++ plugins are that a symbol could not be resolved
when the plugin was loaded or the JSON for the default configuration
is malformed.

There is a utility called get_plugin_info that is used by Python code
to call the C plugin_info call, this can be used to ascertain the
cause of some problems. It should return the default configuration of
your plugin and will verify that your plugin has no undefined symbols.

The location of get_plugin_info will depend on the type of
installation you have. If you have built from source then it can
be found in ./cmake_build/C/plugins/utils/get_plugin_info. If you
have installed a package, or run make install, you can find it in
/usr/local/fledge/extras/C/get_plugin_info.

The utility is passed the library file of your plugin as its first argument
and the function to call, usually plugin_info.

$ get_plugin_info plugins/north/GCP/libGCP.so plugin_info
{"name": "GCP", "version": "1.8.1", "type": "north", "interface": "1.0.0", "flag": 0, "config": { "plugin" : { "description" : "Google Cloud Platform IoT-Core", "type" : "string", "default" : "GCP", "readonly" : "true" }, "project_id" : { "description" : "The GCP IoT Core Project ID", "type" : "string", "default" : "", "order" : "1", "displayName" : "Project ID" }, "region" : { "description" : "The GCP Region", "type" : "enumeration", "options" : ["us-central1", "europe-west1", "asia-east1"], "default" : "us-central1", "order" : "2", "displayName" : "The GCP Region" }, "registry_id" : { "description" : "The Registry ID of the GCP Project", "type" : "string", "default" : "", "order" : "3", "displayName" : "Registry ID" }, "device_id" : { "description" : "Device ID within GCP IoT Core", "type" : "string", "default" : "", "order" : "4", "displayName" : "Device ID" }, "key" : { "description" : "Name of the key file to use", "type" : "string", "default" : "", "order" : "5", "displayName" : "Key Name" }, "algorithm" : { "description" : "JWT algorithm", "type" : "enumeration", "options" : ["ES256", "RS256"], "default" : "RS256", "order" : "6", "displayName" : "JWT Algorithm" }, "source": { "description" : "The source of data to send", "type" : "enumeration", "default" : "readings", "order" : "8", "displayName" : "Data Source", "options" : ["readings", "statistics"] } }}

If there is an undefined symbol you will get an error from this
utility. You can also check the validity of your JSON configuration by
piping the output to a program such as jq.

$ get_plugin_info plugins/south/Random/libRandom.so plugin_info | jq
 {
 "name": "Random",
 "version": "1.9.2",
 "type": "south",
 "interface": "1.0.0",
 "flag": 4096,
 "config": {
 "plugin": {
 "description": "Random data generation plugin",
 "type": "string",
 "default": "Random",
 "readonly": "true"
 },
 "asset": {
 "description": "Asset name",
 "type": "string",
 "default": "Random",
 "displayName": "Asset Name",
 "mandatory": "true"
 }
 }
 }

Running Under a Debugger

If you have a C/C++ plugin that crashes you may want to run the plugin under a debugger. To build with debug symbols use the CMake option -DCMAKE_BUILD_TYPE=Debug when you create the Makefile.

Running a Service Under the Debugger

$ cmake -DCMAKE_BUILD_TYPE=Debug ..

The easiest approach to run under a debugger is

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by Fledge

	Use the fledge status script to find the arguments to pass the service

$ scripts/fledge status
Fledge v1.8.2 running.
Fledge Uptime: 1451 seconds.
Fledge records: 200889 read, 200740 sent, 120962 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.storage --address=0.0.0.0 --port=39821
fledge.services.south --port=39821 --address=127.0.0.1 --name=AX8
fledge.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== Fledge tasks:

	Note the –port= and –address= arguments

	Set your LD_LIBRARY_PATH. This is normally done in the script that launches Fledge but will need to be run as a manual step when running under the debugger.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/fledge/lib

If you built from source rather than installing a package you will need to include the libraries you built

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${FLEDGE_ROOT}/cmake_build/C/lib

	Get a startup token by calling the Fledge API endpoint

Note: the caller must be authenticated as the admin user using either the username and password authentication or the certificate authentication mechanism in order to call the API endpoint.
You must first set Fledge to require authentication.
To do this, launch the Fledge GUI, navigate to Configuration and then Admin API.
Set Authentication to mandatory.
Authentication Method can be left as any.

In order to authenticate as the admin user one of the two following methods should be used, the choice of which is dependant on the authentication mechanism configured in your Fledge installation.

	User and password login

curl -d '{"username": "admin", "some_pass": "fledge"}' -X POST http://localhost:8081/fledge/login

Successful authentication will produce a response as shown below.

{"message": "Logged in successfully", "uid": 1, "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1aWQiOjEsImV4cCI6MTY1NDU5NTIyMn0.IlhIgQ93LbCP-ztGlIuJVd6AJrBlbNBNvCv7SeuMfAs", "admin": true}

	Certificate login

curl -T /some_path/admin.cert -X POST http://localhost:8081/fledge/login

Successful authentication will produce a response as shown below.

{"message": "Logged in successfully", "uid": 1, "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1aWQiOjEsImV4cCI6MTY1NDU5NTkzN30.6VVD_5RwmpLga2A7ri2bXhlo3x_CLqOYiefAAmLP63Y", "admin": true}

It is now possible to call the API endpoint to retrieve a startup token by passing the authentication token given in the authentication request.

 curl -X POST 127.0.0.1:8081/fledge/service/ServiceName/otp -H 'authorization: Token'

 Where *ServiceName* is the name you gave your service when you created it and *Token* received by the authentication request above.

 This call will respond with a startup token that can be used to start the service you are debugging. An example response is shown below.

.. code-block:: console

{"startupToken": "WvFTYeGUvSEFMndePGbyvOsVYUzbnJdi"}

startupToken will be passed as service start argument: --token=*startupToken*

	Load the service you wish to use to run your plugin, e.g. a south service, under the debugger. This should be run from the FLEDGE_ROOT directory

$ cd $FLEDGE_ROOT
$ gdb services/fledge.services.south

	Run the service passing the –port= and –address= arguments you noted above and add -d and –name= with the name of your service and –token=startupToken

(gdb) run --port=39821 --address=127.0.0.1 --name=ServiceName -d --token=startupToken

Where ServiceName is the name you gave your service when you created it and startupToken is the token issued using the method described above. Note, this token may only be used once, each time the service is restarted using the debugger a new startup token must be obtained.

	You can now use the debugger in the way you normally would to find any issues.

Note

At this stage the plugins have not been loaded into the address space. If you try to set a break point in the plugin code you will get a warning that the break point can not currently be set. However when the plugin is later loaded the break point will be set and behave as expected.

Only the plugin has been built with debug information, if you wish to be able to single step into the library code that supports the plugin, and the services you must rebuild Fledge itself with debug symbols. There are multiple ways this can be done, but perhaps the simplest approach is to modify the Makefile in the route of the Fledge source.

When building Fledge the cmake command is executed by the make process, hence rather than manually running cmake and rebuilding you can simple alter the line

CMAKE := cmake

in the Makefile to read

CMAKE := cmake -DCMAKE_BUILD_TYPE=Debug

After making this change you should run a make clean followed by a make command

$ make clean
$ make

One side effect of this, caused by running make clean is that the plugins you have previously built have been removed from the $FLEDGE_ROOT/plugins directory and this must be rebuilt.

Alternatively you can manually build a debug version by running the following commands

$ cd $FLEDGE_ROOT/cmake_build
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ make

This has the advantage that make clean is not run so your plugins will be preserved.

Running a Task Under the Debugger

Running a task under the debugger is much the same as running a service,
you will first need to find the management port and address of the core
management service. Create the task, e.g. a north sending process in
the same way as you normally would and disable it. You will also need
to set your LD_LIBRARY_PATH as with running a service under the debugger.

If you are using a plugin with a task, such as the north sending process
task, then the command to use to start the debugger is

$ gdb tasks/sending_process

Running the Storage Service Under the Debugger

Running the storage service under the debugger is more difficult as you can not start the storage service after Fledge has started, the startup of the storage service is coordinated by the core due to the nature of how configuration is stored. It is possible however to attach a debugger to a running storage service.

	Run a command to find the process ID of the storage service

$ ps aux | grep fledge.services.storage
fledge 23318 0.0 0.3 270848 12388 ? Ssl 10:00 0:01 /usr/local/fledge/services/fledge.services.storage --address=0.0.0.0 --port=33761
fledge 31033 0.0 0.0 13136 1084 pts/1 S+ 10:37 0:00 grep --color=auto fledge.services.storage

	Use the process ID of the fledge service as an argument to gdb. Note you will need to run gdb as root on some systems

$ sudo gdb /usr/local/fledge/services/fledge.services.storage 23318
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from services/fledge.services.storage...done.
Attaching to program: /usr/local/fledge/services/fledge.services.storage, process 23318
[New LWP 23320]
[New LWP 23321]
[New LWP 23322]
[New LWP 23330]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
0x00007f47a3e05d2d in __GI___pthread_timedjoin_ex (threadid=139945627997952, thread_return=0x0, abstime=0x0,
 block=<optimized out>) at pthread_join_common.c:89
89 pthread_join_common.c: No such file or directory.
(gdb)

	You can now use gdb to set break points etc and debug the storage service and plugins.

If you are debugger a plugin that crashes the system when readings are
processed you should disable the south services until you have connected
the debugger to the storage system. If you have a system that is setup
and crashes, use the –safe-mode flag to the startup of Fledge in order
to disable all processes and services. This will allow you to disable
services or to run a particular service manually.

Using strace

You can also use a similar approach to that of running gdb to use the strace command to trace system calls and signals

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by Fledge

	Use the fledge status script to find the arguments to pass the service

$ scripts/fledge status
Fledge v1.8.2 running.
Fledge Uptime: 1451 seconds.
Fledge records: 200889 read, 200740 sent, 120962 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.storage --address=0.0.0.0 --port=39821
fledge.services.south --port=39821 --address=127.0.0.1 --name=AX8
fledge.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== Fledge tasks:

	Note the –port= and –address= arguments

	Run strace with the service adding the same set of arguments you used in gdb when running the service

$ strace services/fledge.services.south --port=39821 --address=127.0.0.1 --name=ServiceName --token=StartupToken -d

Where ServiceName is the name you gave your service and startupToken as issued following above steps.

Memory Leaks and Corruptions

The same approach can be used to make use of the valgrind command to find memory corruption and leak issues in your plugin

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by Fledge

	Use the fledge status script to find the arguments to pass the service

$ scripts/fledge status
Fledge v1.8.2 running.
Fledge Uptime: 1451 seconds.
Fledge records: 200889 read, 200740 sent, 120962 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.storage --address=0.0.0.0 --port=39821
fledge.services.south --port=39821 --address=127.0.0.1 --name=AX8
fledge.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== Fledge tasks:

	Note the –port= and –address= arguments

	Run valgrind with the service adding the same set of arguments you used in gdb when running the service.

Add any arguments you wish to pass to valgrind itself before the service executable name, in this case we are passing –leak-check=full.

$ valgrind --leak-check=full services/fledge.services.south --port=39821 --address=127.0.0.1 --name=ServiceName --token=StartupToken -d

Where ServiceName is the name you gave your service and startupToken is a one time use token obtained following the steps shown above.

	Once the service has run for a while shut it down to trigger valgrind to print a summary of memory leaks found during the execution.

Python Plugin Info

It is also possible to test the loading and validity of the plugin_info call in a Python plugin.

	From the /usr/include/fledge or ${FLEDGE_ROOT} directory run the command

python3 -c 'from fledge.plugins.south.<name>.<name> import plugin_info; print(plugin_info())'

Where <name> is the name of your plugin.

python3 -c 'from fledge.plugins.south.sinusoid.sinusoid import plugin_info; print(plugin_info())'
{'name': 'Sinusoid Poll plugin', 'version': '1.8.1', 'mode': 'poll', 'type': 'south', 'interface': '1.0', 'config': {'plugin': {'description': 'Sinusoid Poll Plugin which implements sine wave with data points', 'type': 'string', 'default': 'sinusoid', 'readonly': 'true'}, 'assetName': {'description': 'Name of Asset', 'type': 'string', 'default': 'sinusoid', 'displayName': 'Asset name', 'mandatory': 'true'}}}

This allows you to confirm the plugin can be loaded and the plugin_info entry point can be called.

You can also check your default configuration. Although in Python this is usually harder to get wrong.

$ python3 -c 'from fledge.plugins.south.sinusoid.sinusoid import plugin_info; print(plugin_info()["config"])'
{'plugin': {'description': 'Sinusoid Poll Plugin which implements sine wave with data points', 'type': 'string', 'default': 'sinusoid', 'readonly': 'true'}, 'assetName': {'description': 'Name of Asset', 'type': 'string', 'default': 'sinusoid', 'displayName': 'Asset name', 'mandatory': 'true'}}

 Developing with Windows Subsystem for Linux (WSL2)

Developing with Windows Subsystem for Linux (WSL2)

Windows Subsystem for Linux (WSL2) [https://docs.microsoft.com/en-us/windows/wsl] allows you to run a Linux environment directly on Windows
without the overhead of Hyper-V on Windows 10 [https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about] or a dual-boot setup.
You can run many Linux command-line tools, utilities, and applications on a special lightweight virtual machine running on Windows.
It is possible to run a complete Fledge system on WSL2.
This includes the Fledge GUI
which can be accessed from a browser running on the host Windows environment.

Microsoft’s Visual Studio Code [https://code.visualstudio.com] is a cross-platform editor that supports extensions
for building and debugging software in a variety of languages and environments.
This article describes how to configure Visual Studio Code to edit, build and debug Fledge plugins written in C++ running in Linux under WSL2.

Note

It is possible to configure Visual Studio Code to build and test Python code in WSL2 but this is not covered in this article.

Preparing the Development Environment

This section outlines the steps to configure WSL2 and the Linux environment.

Installing Windows Subsystem for Linux (WSL2)

You must be running Windows 10 version 2004 and higher (Build 19041 and higher) or Windows 11 to install WSL2.
The easiest way to install is to open a Windows Command Prompt as Administrator and run this command:

wsl --install

Windows will perform all the necessary steps for you.
It will install the default Linux distribution which is the latest version of Ubuntu.
If you wish to perform the steps manually, or install a Linux distribution other than the default,
see the Microsoft documentation on Installing WSL [https://docs.microsoft.com/en-us/windows/wsl/install].

When the installation completes, the Linux distribution will launch in a new window.
It will prompt you for a username to serve as the root account and password.
This username has nothing to do with your Windows environment so it can be any name you choose.

You can start the Linux distribution at any time by finding it in the Windows Start Menu.
If you hit the Windows key and type the name of your Linux distribution (default: “Ubuntu”), you should see it immediately.

Some Useful Features of WSL2

A Linux distribution running in WSL2 is a lightweight virtual machine but is well integrated with the Windows environment.
Here are some useful features:

	Cut and paste text into and out of the Linux window:

The Linux window behaves just like a Command Prompt window or a Powershell window.
You can copy text from any window and paste it into any other.

	Access the Linux file system from Windows:

The Linux file system appears as a Network drive in Windows.
Open the Windows File Explorer and navigate to “\\wsl$.”
You will see your Linux distributions appear as network folders.

	Access the Windows file system from Linux:

From the bash command line, navigate to the mount point “/mnt.”
You will see your Windows drive letters in this directory.

	Access the Linux environment from the Windows host through the network:

From the bash command line, run the command hostname -I.
The external IP address returned by this command can be used in the Windows host to reach Linux.

	Access the Windows host from the Linux environment through the network:

From the bash command line, run the command cat /etc/resolv.conf.
The IP address after the label nameserver can be used in the Linux environment to reach the Windows host.

Preparing the Linux Distribution for Fledge

The systemd service manager is not configured by default in an Ubuntu distribution running in WSL2.
Since Fledge relies on systemd, you must run a script to enable it.
From your home directory in the Ubuntu window, enter the commands:

git clone https://github.com/DamionGans/ubuntu-wsl2-systemd-script.git
cd ubuntu-wsl2-systemd-script
bash ubuntu-wsl2-systemd-script.sh

Restart the Ubuntu distribution using sudo reboot or sudo systemctl reboot.
When the distribution has restarted, run the command systemctl.
You should see no error and a list of units.
The script must be run one time only.
Whenever you start up your Ubuntu distribution, systemd should be ready.

Installing Fledge

Following the normal instructions for Installing Fledge on Ubuntu.
Make sure the package repository matches your version of Ubuntu.
You can check the operating system version in your distribution with the command hostnamectl or cat /etc/os-release.

Installing Visual Studio Code

Navigate to the Visual Studio Code [https://code.visualstudio.com] webpage in your Windows browser.
Click the Download for Windows button.
Run the installer to install Visual Studio Code.

Visual Studio Code is available for Microsoft Windows, Apple MacOS, and several Linux distributions.
Do not install the Linux build of Visual Studio Code in your Linux distribution in WSL2.
You will actually be launching Visual Studio Code for Windows from your Linux distribution!

Starting the Linux Distribution

Perform these steps every time you start your Linux distribution if you plan to run Fledge:

Starting syslog

The system log /var/log/syslog is not configured to run automatically in a Linux distribution in WSL2.
Start syslog with the command:

sudo service rsyslog start

You must do this at every startup.

Starting Nginx

Fledge uses Nginx [https://nginx.org] as a web server to host the Fledge GUI.
If you plan to run Fledge GUI during your Linux distribution session, enter the command:

sudo service nginx start

You must do this at every startup if you plan to run the Fledge GUI.

Starting Fledge

Start Fledge normally.
You can start it from the normal run directory, or from your build directory by following the directions on the webpage
Testing Your Plugin.

Starting Fledge GUI

If Nginx is running, you can run the Fledge GUI in a browser in your host Windows environment.
Find the external IP address for your Linux distribution using the command:

hostname -I

This address is reachable from your Windows environment.
Copy the IP address to a new tab in your browser and hit Enter.
You should see the Fledge GUI Dashboard page.

Note

The Linux distribution’s external IP address is (usually) different every time you start it.
You will need to run the hostname -I command every time to obtain the current IP address.

Configuring Visual Studio Code

This section describes how to configure Visual Studio Code to edit, build and debug your C++ Linux projects.
These instructions are summarized from the Visual Studio Code tutorial Using C++ and WSL in VS Code [https://code.visualstudio.com/docs/cpp/config-wsl].

Installing Extensions

Navigate to a directory containing your C++ source code files and issue the command:

code .

This will launch Visual Studio Code in your Windows environment but it will be looking at the current directory in your Linux distribution.
Since you are launching Visual Studio Code from your Linux distribution, Code should prompt you to install two Extensions:

	Remote-WSL [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl]

	C/C++ [https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools]

If you are not prompted, follow these links to install the extensions and restart Visual Studio Code.
If the extensions are installed and working, you should see a green label in the lower left-hand corner of the Visual Studio Code window
with the text WSL: followed by the name of your Linux distribution.

Configuring your Workspace

Visual Studio Code refers to your directory of source code files as the Workspace.
In order to edit, build and debug your code, you must create 3 Json files in a Workspace subdirectory called .vscode:

	c_cpp_properties.json: compiler path, IntelliSense settings, and include file paths

	tasks.json: build instructions

	launch.json: debugger settings

You can create these files manually or use Visual Studio Code’s configuration wizards.
These subsections describe creation and required contents of each of these three files.

Code Editor Configuration: c_cpp_properties.json

	Open the Command Palette using the key sequence Ctrl+Shift+P.

	Choose the command C/C++: Edit Configurations (JSON).

	This will create the .vscode subdirectory (if it doesn’t already exist) and the c_cpp_properties.json file.

	This Json file will be opened for editing.

	You will see a new array called configurations with a single configuration object defined.

	This configuration will have a string array called includePath.

	Add the paths to your own include files, and those required by the Fledge API to the includePath array.

	You can use Linux environment variables in your paths. For example:

"${FLEDGE_ROOT}/C/common/include"

	You can find the list of include files by running your make command:

make --just-print

which will list all commands defined by make without executing them.
You will see the include file list in every instance of the gcc compiler command.

Build Configuration: tasks.json

	From the Visual Studio Code main menu, choose Terminal -> Configure Default Build Task.

	A dropdown will display of available tasks for C++ projects.

	Choose g++ build active file.

	This will create the .vscode subdirectory (if it doesn’t already exist) and the tasks.json file.

	Open the Json file for editing.

Building the project will be done using the make file rather than the gcc compiler.
To make this change, edit the command and args entries as follows:

"command": "make",
"args": [
 "-C",
 "${workspaceFolder}/build"
],

The “-C” argument for make will move into the specified directory before doing anything.

You can invoke a build from Visual Studio Code at any time with the key sequence Ctrl+Shift+B.

Debugger Configuration: launch.json

	From the Visual Studio Code main menu, choose Run -> Add Configuration...

	Choose C++ (GDB/LLDB).

	This will create the .vscode subdirectory (if it doesn’t already exist) and the launch.json file.

	Edit the launch.json file so it looks like this:

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Debug Plugin",
 "type": "cppdbg",
 "request": "launch",
 "targetArchitecture": "x86_64",
 "cwd": "${fileDirname}",
 "program": "/full/path/to/fledge.services.north",
 "externalConsole": false,
 "stopAtEntry": true,
 "MIMode": "gdb",
 "avoidWindowsConsoleRedirection": false,
 "args": [
 "--port=42467",
 "--address=0.0.0.0",
 "--name=MyPluginInstance",
 "-d"
]
 }
]
}

Note

	The program attribute holds the program that the gdb debugger should launch.
For Fledge plugin development, this is either fledge.services.north or fledge.services.south depending on which one you are building.
These service executables will dynamically load your plugin library when they run.

	The args attribute has the arguments normally passed to the service executable.
Since the TCP/IP port changes every time Fledge starts up, you must edit this file to update the port number before starting your debug session.

Start your debug session from the Visual Studio Code main menu.
Choose Run -> Start Debugging or by hitting the F5 key.

Known Problems

	Environment variables in launch.json:

Support for environment variables in the program attribute is inconsistent.
Variables created by Visual Studio Code itself will work but user-defined environment variables like FLEDGE_ROOT will not.

	gdb startup errors:

It can occur that gdb stops with error 42 and exits immediately when you start a debugging session.
To fix this, shut down your Linux distributions and reinstall Visual Studio Code in Windows.
You will not lose your configuration settings or your installed extensions.

	Inconsistent breakpoint lists:

Visual Studio Code shows a list of breakpoints in the lower left corner of the window.
The gdb debugger maintains its own list of breakpoints.
It can occur that the two lists fall out of sync.
You can still create, view and delete breakpoints from the Debug Console tab at the bottom of the screen which gives you access to the gdb command line.
When using the Debug Console, you must precede all gdb commands with “-exec.”

	To manipulate breakpoints:
	
	Set a breakpoint: -exec b functionName.

	View breakpoints: -exec info b.
This will display an ordinal number for each breakpoint.

	Delete breakpoints: -exec del ##. Use the original number returned by -exec info b as “##.”

References

	Visual Studio Code [https://code.visualstudio.com]

	Using C++ and WSL in VS Code [https://code.visualstudio.com/docs/cpp/config-wsl]

	Remote development in WSL [https://code.visualstudio.com/docs/remote/wsl-tutorial]

	Debug C++ in Visual Studio Code [https://code.visualstudio.com/docs/cpp/cpp-debug]

	Predefined Variables Reference [https://code.visualstudio.com/docs/editor/variables-reference]

	C_cpp_properties.json reference [https://code.visualstudio.com/docs/cpp/c-cpp-properties-schema-reference]

	Schema for tasks.json [https://code.visualstudio.com/docs/editor/tasks-appendix]

	Configuring C/C++ Debugging (launch.json) [https://code.visualstudio.com/docs/cpp/launch-json-reference]

 REST API Developers Guide

REST API Developers Guide

	The Fledge REST API
	Introducing the Fledge REST API
	Port Usage

	Infrastructure

	Administration API Reference
	Audit Trail
	audit
	GET Audit Entries

	POST Audit Entries

	Configuration Management
	category
	GET categor(ies)

	GET category

	GET category item

	PUT category item

	DELETE category item

	POST category

	Task Management
	task
	GET task

	GET task latest

	GET task by ID

	Cancel task by ID

	Other Administrative API calls
	ping
	GET ping

	statistics
	GET statistics

	GET statistics/history

	User API Reference
	Browsing Assets
	asset
	GET all assets

	GET asset readings

	GET asset reading

	GET asset reading summary

	GET timed average asset reading

 The Fledge REST API

The Fledge REST API

Users, administrators and applications interact with Fledge via a REST API. This section presents a full reference of the API.

Note

The Fledge REST API should not be confused with the internal REST API used by Fledge tasks and microservices to communicate with each other.

Introducing the Fledge REST API

The REST API is the route into the Fledge appliance, it provides all user and program interaction to configure, monitor and manage the Fledge system. A separate specification will define the contents of the API, in summary however it is designed to allow for:

	The complete configuration of the Fledge appliance

	Access to monitoring statistics for the Fledge appliance

	User and role management for access to the API

	Access to the data buffer contents

Port Usage

In general Fledge components use dynamic port allocation to determine which port to use, the admin API is however an exception to this rule. The Admin API port has to be known to end-users and any user interface or management system that uses it, therefore the port on which the admin API listens must be consistent and fixed between invocations. This does not mean however that it can not be changed by the user. The user must have the option to define the port to use by the admin API to listen on. To achieve this the port will be stored in the configuration data for the admin API, using the configuration category AdminAPI, see Configuration. Administrators who have access to the appliance can find information regarding the port and the protocol to used (i.e. HTTP or HTTPS) in the pid file stored in $FLEDGE_DATA/var/run/:

$ cat data/var/run/fledge.core.pid
{ "adminAPI" : { "protocol" : "HTTP",
 "port" : 8081,
 "addresses" : ["0.0.0.0"] },
 "processID" : 3585 }
$

Fledge is shipped with a default port for the admin API to use, however the user is free to change this after installation. This can be done by first connecting to the port defined as the default and then modifying the port using the admin API. Fledge should then be restarted to make use of this new port.

Infrastructure

There are two REST API’s that allow external access to Fledge, the Administration API and the User API. The User API is intended to allow access to the data in the Fledge storage layer which buffers sensor readings, and it is not part of this current version.

The Administration API is the first API is concerned with all aspects of managing and monitoring the Fledge appliance. This API is used for all configuration operations that occur beyond basic installation.

 Administration API Reference

Administration API Reference

This section presents the list of administrative API methods in alphabetical order.

Audit Trail

The audit trail API is used to interact with the audit trail log tables in the storage microservice. In Fledge, log information is stored in the system log where the microservice is hosted. All the relevant information used for auditing are instead stored inside Fledge and they are accessible through the Admin REST API. The API allows the reading but also the addition of extra audit logs, as if such logs are created within the system.

audit

The audit methods implement the audit trail, they are used to create and retrieve audit logs.

GET Audit Entries

GET /fledge/audit - return a list of audit trail entries sorted with most recent first.

Request Parameters

	limit - limit the number of audit entries returned to the number specified

	skip - skip the first n entries in the audit table, used with limit to implement paged interfaces

	source - filter the audit entries to be only those from the specified source

	severity - filter the audit entries to only those of the specified severity

Response Payload

The response payload is an array of JSON objects with the audit trail entries.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The timestamp when the audit trail

item was written.

	2018-04-16 14:33:18.215

	source

	string

	The source of the audit trail entry.

	CoAP

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Sensor readings discarded due to malformed payload” }

Example

$ curl -s http://localhost:8081/fledge/audit?limit=2
{ "totalCount" : 24,
 "audit" : [{ "timestamp" : "2018-02-25 18:58:07.748",
 "source" : "SRVRG",
 "details" : { "name" : "COAP" },
 "severity" : "INFORMATION" },
 { "timestamp" : "2018-02-25 18:58:07.742",
 "source" : "SRVRG",
 "details" : { "name" : "HTTP_SOUTH" },
 "severity" : "INFORMATION" },
 { "timestamp" : "2018-02-25 18:58:07.390",
 "source" : "START",
 "details" : {},
 "severity" : "INFORMATION" }
]
}
$ curl -s http://localhost:8081/fledge/audit?source=SRVUN&limit=1
{ "totalCount" : 4,
 "audit" : [{ "timestamp" : "2018-02-25 05:22:11.053",
 "source" : "SRVUN",
 "details" : { "name": "COAP" },
 "severity" : "INFORMATION" }
]
}
$

POST Audit Entries

POST /fledge/audit - create a new audit trail entry.

The purpose of the create method on an audit trail entry is to allow a user interface or an application that is using the Fledge API to utilize the Fledge audit trail and notification mechanism to raise user defined audit trail entries.

Request Payload

The request payload is a JSON object with the audit trail entry minus the timestamp.

	Name

	Type

	Description

	Example

	source

	string

	The source of the audit trail entry.

	LOGGN

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Internal System Error” }

Response Payload

The response payload is the newly created audit trail entry.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The timestamp when the audit trail

item was written.

	2018-04-16 14:33:18.215

	source

	string

	The source of the audit trail entry.

	LOGGN

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Internal System Error” }

Example

$ curl -X POST http://localhost:8081/fledge/audit \
-d '{ "severity": "FAILURE", "details": { "message": "Internal System Error" }, "source": "LOGGN" }'
{ "source": "LOGGN",
 "timestamp": "2018-04-17 11:49:55.480",
 "severity": "FAILURE",
 "details": { "message": "Internal System Error" }
}
$
$ curl -X GET http://localhost:8081/fledge/audit?severity=FAILURE
{ "totalCount": 1,
 "audit": [{ "timestamp": "2018-04-16 18:32:28.427",
 "source" : "LOGGN",
 "details" : { "message": "Internal System Error" },
 "severity" : "FAILURE" }
]
}
$

Configuration Management

Configuration management in an important aspect of the REST API, however due to the discoverable form of the configuration of Fledge the API itself is fairly small.

The configuration REST API interacts with the configuration manager to create, retrieve, update and delete the configuration categories and values. Specifically all updates must go via the management layer as this is used to trigger the notifications to the components that have registered interest in configuration categories. This is the means by which the dynamic reconfiguration of Fledge is achieved.

category

The category interface is part of the Configuration Management for Fledge and it is used to create, retrieve, update and delete configuration categories and items.

GET categor(ies)

GET /fledge/category - return the list of known categories in the configuration database

Response Payload

The response payload is a JSON object with an array of JSON objects, one per valid category.

	Name

	Type

	Description

	Example

	key

	string

	The category key, each category

has a unique textual key that defines it.

	network

	description

	string

	A description of the category that may be

used for display purposes.

	Network Settings

	displayName

	string

	Name of the category that may be

used for display purposes.

	Network Settings

Example

$ curl -X GET http://localhost:8081/fledge/category
{
 "categories":
 [
 {
 "key": "SCHEDULER",
 "description": "Scheduler configuration",
 "displayName": "Scheduler"
 },
 {
 "key": "SMNTR",
 "description": "Service Monitor",
 "displayName": "Service Monitor"
 },
 {
 "key": "rest_api",
 "description": "Fledge Admin and User REST API",
 "displayName": "Admin API"
 },
 {
 "key": "service",
 "description": "Fledge Service",
 "displayName": "Fledge Service"
 },
 {
 "key": "Installation",
 "description": "Installation",
 "displayName": "Installation"
 },
 {
 "key": "General",
 "description": "General",
 "displayName": "General"
 },
 {
 "key": "Advanced",
 "description": "Advanced",
 "displayName": "Advanced"
 },
 {
 "key": "Utilities",
 "description": "Utilities",
 "displayName": "Utilities"
 }
]
}
$

GET category

GET /fledge/category/{name} - return the configuration items in the given category.

Path Parameters

	name is the name of one of the categories returned from the GET /fledge/category call.

Response Payload

The response payload is a set of configuration items within the category, each item is a JSON object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the Fledge server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X GET http://localhost:8081/fledge/category/rest_api
{
 "enableHttp": {
 "description": "Enable HTTP (disable to use HTTPS)",
 "type": "boolean",
 "default": "true",
 "displayName": "Enable HTTP",
 "order": "1",
 "value": "true"
 },
 "httpPort": {
 "description": "Port to accept HTTP connections on",
 "type": "integer",
 "default": "8081",
 "displayName": "HTTP Port",
 "order": "2",
 "value": "8081"
 },
 "httpsPort": {
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
 },
 "certificateName": {
 "description": "Certificate file name",
 "type": "string",
 "default": "fledge",
 "displayName": "Certificate Name",
 "order": "4",
 "validity": "enableHttp==\"false\"",
 "value": "fledge"
 },
 "authentication": {
 "description": "API Call Authentication",
 "type": "enumeration",
 "options": [
 "mandatory",
 "optional"
],
 "default": "optional",
 "displayName": "Authentication",
 "order": "5",
 "value": "optional"
 },
 "authMethod": {
 "description": "Authentication method",
 "type": "enumeration",
 "options": [
 "any",
 "password",
 "certificate"
],
 "default": "any",
 "displayName": "Authentication method",
 "order": "6",
 "value": "any"
 },
 "authCertificateName": {
 "description": "Auth Certificate name",
 "type": "string",
 "default": "ca",
 "displayName": "Auth Certificate",
 "order": "7",
 "value": "ca"
 },
 "allowPing": {
 "description": "Allow access to ping, regardless of the authentication required and authentication header",
 "type": "boolean",
 "default": "true",
 "displayName": "Allow Ping",
 "order": "8",
 "value": "true"
 },
 "passwordChange": {
 "description": "Number of days after which passwords must be changed",
 "type": "integer",
 "default": "0",
 "displayName": "Password Expiry Days",
 "order": "9",
 "value": "0"
 },
 "authProviders": {
 "description": "Authentication providers to use for the interface (JSON array object)",
 "type": "JSON",
 "default": "{\"providers\": [\"username\", \"ldap\"] }",
 "displayName": "Auth Providers",
 "order": "10",
 "value": "{\"providers\": [\"username\", \"ldap\"] }"
 }
 }
$

GET category item

GET /fledge/category/{name}/{item} - return the configuration item in the given category.

Path Parameters

	name - the name of one of the categories returned from the GET /fledge/category call.

	item - the item within the category to return.

Response Payload

The response payload is a configuration item within the category, each item is a JSON object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the Fledge server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X GET http://localhost:8081/fledge/category/rest_api/httpsPort
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
}

$

PUT category item

PUT /fledge/category/{name}/{item} - set the configuration item value in the given category.

Path Parameters

	name - the name of one of the categories returned from the GET /fledge/category call.

	item - the the item within the category to set.

Request Payload

A JSON object with the new value to assign to the configuration item.

	Name

	Type

	Description

	Example

	value

	string

	The new value of the configuration item.

	192.168.0.27

Response Payload

The response payload is the newly updated configuration item within the category, the item is a JSON object object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the Fledge server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X PUT http://localhost:8081/fledge/category/rest_api/httpsPort \
 -d '{ "value" : "1996" }'
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1996"
}
$

DELETE category item

DELETE /fledge/category/{name}/{item}/value - unset the value of the configuration item in the given category.

This will result in the value being returned to the default value if one is defined. If not the value will be blank, i.e. the value property of the JSON object will exist with an empty value.

Path Parameters

	name - the name of one of the categories returned from the GET /fledge/category call.

	item - the the item within the category to return.

Response Payload

The response payload is the newly updated configuration item within the category, the item is a JSON object object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the Fledge server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	127.0.0.1

Example

$ curl -X DELETE http://localhost:8081/fledge/category/rest_api/httpsPort/value
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
}
$

POST category

POST /fledge/category - creates a new category

Request Payload

A JSON object that defines the category.

	Name

	Type

	Description

	Example

	key

	string

	The key that identifies the category.

If the key already exists as a category

then the contents of this request

is merged with the data stored.

	backup

	description

	string

	A description of the configuration category

	Backup configuration

	items

	list

	An optional list of items to create in this category

	

	 name

 User API Reference

User API Reference

The user API provides a mechanism to access the data that is buffered within Fledge. It is designed to allow users and applications to get a view of the data that is available in the buffer and do analysis and possibly trigger actions based on recently received sensor readings.

In order to use the entry points in the user API, with the exception of the /fledge/authenticate entry point, there must be an authenticated client calling the API. The client must provide a header field in each request, authtoken, the value of which is the token that was retrieved via a call to /fledge/authenticate. This token must be checked for validity and also that the authenticated entity has user or admin permissions.

Browsing Assets

asset

The asset method is used to browse all or some assets, based on search and filtering.

GET all assets

GET /fledge/asset - Return an array of asset codes buffered in Fledge and a count of assets by code.

Response Payload

An array of JSON objects, one per asset.

	Name

	Type

	Description

	Example

	[].assetCode

	string

	The code of the asset

	fogbench/accelerometer

	[].count

	number

	The number of recorded readings for the asset code

	22359

Example

$ curl -s http://localhost:8081/fledge/asset
[{ "count": 18, "assetCode": "fogbench/accelerometer" },
 { "count": 18, "assetCode": "fogbench/gyroscope" },
 { "count": 18, "assetCode": "fogbench/humidity" },
 { "count": 18, "assetCode": "fogbench/luxometer" },
 { "count": 18, "assetCode": "fogbench/magnetometer" },
 { "count": 18, "assetCode": "fogbench/mouse" },
 { "count": 18, "assetCode": "fogbench/pressure" },
 { "count": 18, "assetCode": "fogbench/switch" },
 { "count": 18, "assetCode": "fogbench/temperature" },
 { "count": 18, "assetCode": "fogbench/wall clock" }]
$

GET asset readings

GET /fledge/asset/{code} - Return an array of readings for a given asset code.

Path Parameters

	code - the asset code to retrieve.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 readings.

Response Payload

An array of JSON objects with the readings data for a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	[].timestamp

	timestamp

	The time at which the reading was received.

	2018-04-16 14:33:18.215

	[].reading

	JSON object

	The JSON reading object received from the sensor.

	{“reading”: {“x”:0, “y”:0, “z”:1}

Example

$ curl -s http://localhost:8081/fledge/asset/fogbench%2Faccelerometer
[{ "reading": { "x": 0, "y": -2, "z": 0 }, "timestamp": "2018-04-19 14:20:59.692" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:20:54.643" },
 { "reading": { "x": -1, "y": 2, "z": 1 }, "timestamp": "2018-04-19 14:20:49.899" },
 { "reading": { "x": -1, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:20:47.026" },
 { "reading": { "x": -1, "y": -2, "z": -2 }, "timestamp": "2018-04-19 14:20:42.746" },
 { "reading": { "x": 0, "y": 2, "z": 0 }, "timestamp": "2018-04-19 14:20:37.418" },
 { "reading": { "x": -2, "y": -1, "z": 2 }, "timestamp": "2018-04-19 14:20:32.650" },
 { "reading": { "x": 0, "y": 0, "z": 1 }, "timestamp": "2018-04-19 14:06:05.870" },
 { "reading": { "x": 1, "y": 1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.870" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:06:05.869" },
 { "reading": { "x": 2, "y": -1, "z": 0 }, "timestamp": "2018-04-19 14:06:05.868" },
 { "reading": { "x": -1, "y": -2, "z": 2 }, "timestamp": "2018-04-19 14:06:05.867" },
 { "reading": { "x": 2, "y": 1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.867" },
 { "reading": { "x": 1, "y": -2, "z": 1 }, "timestamp": "2018-04-19 14:06:05.866" },
 { "reading": { "x": 2, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.865" },
 { "reading": { "x": 0, "y": -1, "z": 2 }, "timestamp": "2018-04-19 14:06:05.865" },
 { "reading": { "x": 0, "y": -2, "z": 1 }, "timestamp": "2018-04-19 14:06:05.864" },
 { "reading": { "x": -1, "y": -2, "z": 0 }, "timestamp": "2018-04-19 13:45:15.881" }]
$
$ curl -s http://localhost:8081/fledge/asset/fogbench%2Faccelerometer?limit=5
[{ "reading": { "x": 0, "y": -2, "z": 0 }, "timestamp": "2018-04-19 14:20:59.692" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:20:54.643" },
 { "reading": { "x": -1, "y": 2, "z": 1 }, "timestamp": "2018-04-19 14:20:49.899" },
 { "reading": { "x": -1, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:20:47.026" },
 { "reading": { "x": -1, "y": -2, "z": -2 }, "timestamp": "2018-04-19 14:20:42.746" }]
$

GET asset reading

GET /fledge/asset/{code}/{reading} - Return an array of single readings for a given asset code.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 single readings.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The time at which the reading was received.

	2018-04-16 14:33:18.215

	{reading}

	JSON object

	The value of the specified reading.

	“temperature”: 20

Example

$ curl -s http://localhost:8081/fledge/asset/fogbench%2Fhumidity/temperature
[{ "temperature": 20, "timestamp": "2018-04-19 14:20:59.692" },
 { "temperature": 33, "timestamp": "2018-04-19 14:20:54.643" },
 { "temperature": 35, "timestamp": "2018-04-19 14:20:49.899" },
 { "temperature": 0, "timestamp": "2018-04-19 14:20:47.026" },
 { "temperature": 37, "timestamp": "2018-04-19 14:20:42.746" },
 { "temperature": 47, "timestamp": "2018-04-19 14:20:37.418" },
 { "temperature": 26, "timestamp": "2018-04-19 14:20:32.650" },
 { "temperature": 12, "timestamp": "2018-04-19 14:06:05.870" },
 { "temperature": 38, "timestamp": "2018-04-19 14:06:05.869" },
 { "temperature": 7, "timestamp": "2018-04-19 14:06:05.869" },
 { "temperature": 21, "timestamp": "2018-04-19 14:06:05.868" },
 { "temperature": 5, "timestamp": "2018-04-19 14:06:05.867" },
 { "temperature": 40, "timestamp": "2018-04-19 14:06:05.867" },
 { "temperature": 39, "timestamp": "2018-04-19 14:06:05.866" },
 { "temperature": 29, "timestamp": "2018-04-19 14:06:05.865" },
 { "temperature": 41, "timestamp": "2018-04-19 14:06:05.865" },
 { "temperature": 46, "timestamp": "2018-04-19 14:06:05.864" },
 { "temperature": 10, "timestamp": "2018-04-19 13:45:15.881" }]
$
$ curl -s http://localhost:8081/fledge/asset/fogbench%2Faccelerometer?limit=5
[{ "temperature": 20, "timestamp": "2018-04-19 14:20:59.692" },
 { "temperature": 33, "timestamp": "2018-04-19 14:20:54.643" },
 { "temperature": 35, "timestamp": "2018-04-19 14:20:49.899" },
 { "temperature": 0, "timestamp": "2018-04-19 14:20:47.026" },
 { "temperature": 37, "timestamp": "2018-04-19 14:20:42.746" }]
$

GET asset reading summary

GET /fledge/asset/{code}/{reading}/summary - Return minimum, maximum and average values of a reading by asset code.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	{reading}.average

	number

	The average value of the set of

sensor values selected in the query string

	27

	{reading}.min

	number

	The minimum value of the set of

sensor values selected in the query string

	0

	{reading}.max

	number

	The maximum value of the set of

sensor values selected in the query string

	47

Example

$ curl -s http://localhost:8081/fledge/asset/fogbench%2Fhumidity/temperature/summary
{ "temperature": { "max": 47, "min": 0, "average": 27 } }
$

GET timed average asset reading

GET /fledge/asset/{code}/{reading}/series - Return minimum, maximum and average values of a reading by asset code in a time series. The default interval in the series is one second.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 single readings.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The time the reading represents.

	2018-04-16 14:33:18

	average

	number

	The average value of the set of

sensor values selected in the query string

	27

	min

	number

	The minimum value of the set of

sensor values selected in the query string

	0

	max

	number

	The maximum value of the set of

sensor values selected in the query string

	47

Example

$ curl -s http://localhost:8081/fledge/asset/fogbench%2Fhumidity/temperature/series
[{ "timestamp": "2018-04-19 14:20:59", "max": 20, "min": 20, "average": 20 },
 { "timestamp": "2018-04-19 14:20:54", "max": 33, "min": 33, "average": 33 },
 { "timestamp": "2018-04-19 14:20:49", "max": 35, "min": 35, "average": 35 },
 { "timestamp": "2018-04-19 14:20:47", "max": 0, "min": 0, "average": 0 },
 { "timestamp": "2018-04-19 14:20:42", "max": 37, "min": 37, "average": 37 },
 { "timestamp": "2018-04-19 14:20:37", "max": 47, "min": 47, "average": 47 },
 { "timestamp": "2018-04-19 14:20:32", "max": 26, "min": 26, "average": 26 },
 { "timestamp": "2018-04-19 14:06:05", "max": 46, "min": 5, "average": 27.8 },
 { "timestamp": "2018-04-19 13:45:15", "max": 10, "min": 10, "average": 10 }]
$
$ curl -s http://localhost:8081/fledge/asset/fogbench%2Fhumidity/temperature/series
[{ "timestamp": "2018-04-19 14:20:59", "max": 20, "min": 20, "average": 20 },
 { "timestamp": "2018-04-19 14:20:54", "max": 33, "min": 33, "average": 33 },
 { "timestamp": "2018-04-19 14:20:49", "max": 35, "min": 35, "average": 35 },
 { "timestamp": "2018-04-19 14:20:47", "max": 0, "min": 0, "average": 0 },
 { "timestamp": "2018-04-19 14:20:42", "max": 37, "min": 37, "average": 37 }]

 Building Fledge

Building Fledge

	Building Developers Guide
	Introduction
	What Is Fledge?
	Fledge Positioning in an IoT and IIoT Infrastructure

	Fledge Features

	Building Fledge
	Fledge Platforms
	Requirements

	Building Fledge
	Obtaining the Source Code

	Selecting the Correct Version

	Building Fledge

	Testing Fledge from the Build Environment

	Now I Want to Stop Fledge!

	Appendix: Setting the PostgreSQL Database

	Fledge Installation
	Installing Fledge from a Build
	Environment Variables

	The setenv.sh Script

	The fledge.service Script

	Installing the Debian Package
	Obtaining and Installing the Debian Package

	Upgrading or Downgrading Fledge

	Uninstalling the Debian Package

	Testing Fledge
	First Checks: Fledge Status

	Hello, Foggy World!
	The Fledge REST API
	Useful Tools

	Hello World!

	Hello from the Southern Hemisphere of the Fledge World
	fogbench: a Brief Intro

	Data Coming from South

	Checking What’s Inside Fledge
	Feeding East/West Applications

	Sending Greetings to the Northern Hemisphere
	The OMF Translator

	Preparing the PI System

	Setting the OMF Translator Plugin

	Sending Data to the PI System

	Fledge Utilities and Scripts
	fledge
	Starting Fledge

	Safe Mode

	Stopping Fledge

	If Fledge Does Not Stop

	Checking the Status of Fledge

	Resetting Fledge

	Fledge Tasks
	Purge
	Purge Schedule

	Purge Configuration

	Building and using Fledge on Raspbian

 Building Developers Guide

Building Developers Guide

	Introduction
	What Is Fledge?
	Fledge Positioning in an IoT and IIoT Infrastructure

	Fledge Features

	Building Fledge
	Fledge Platforms
	Requirements

	Building Fledge
	Obtaining the Source Code

	Selecting the Correct Version

	Building Fledge

	Testing Fledge from the Build Environment

	Now I Want to Stop Fledge!

	Appendix: Setting the PostgreSQL Database

	Fledge Installation
	Installing Fledge from a Build
	Environment Variables

	The setenv.sh Script

	The fledge.service Script

	Installing the Debian Package
	Obtaining and Installing the Debian Package

	Upgrading or Downgrading Fledge

	Uninstalling the Debian Package

	Testing Fledge
	First Checks: Fledge Status

	Hello, Foggy World!
	The Fledge REST API
	Useful Tools

	Hello World!

	Hello from the Southern Hemisphere of the Fledge World
	fogbench: a Brief Intro

	Data Coming from South

	Checking What’s Inside Fledge
	Feeding East/West Applications

	Sending Greetings to the Northern Hemisphere
	The OMF Translator

	Preparing the PI System

	Setting the OMF Translator Plugin

	Sending Data to the PI System

	Fledge Utilities and Scripts
	fledge
	Starting Fledge

	Safe Mode

	Stopping Fledge

	If Fledge Does Not Stop

	Checking the Status of Fledge

	Resetting Fledge

	Fledge Tasks
	Purge
	Purge Schedule

	Purge Configuration

 Introduction

Introduction

What Is Fledge?

Fledge is an open source platform for the Internet of Things and an
essential component in Fog Computing. It uses a modular
microservices architecture including sensor data collection, storage, processing and forwarding to historians, Enterprise systems and Cloud-based services. Fledge can run in highly available, stand alone, unattended environments that assume unreliable network connectivity.

By providing a modular and distributable framework under an open source Apache v2 license, Fledge is the best platform to manage the data infrastructure for IoT. The modules can be distributed in any layer - Edge, Fog and Cloud - and they act together to provide scalability, elasticity and resilience.

Fledge offers an “all-round” solution for data management, combining a bi-directional Northbound/Southbound data and metadata communication with a Eastbound/Westbound service and object distribution.

Fledge Positioning in an IoT and IIoT Infrastructure

Fledge can be used in IoT and IIoT infrastructure at Edge and in the Fog.
It stretches bi-directionally South-North/North-South and it is distributed
East-West/West-East (see figure below).

[image: fledge_all_round]

Note

In this scenario we refer to “Cloud” as the layer above the Fog. “Fog” is where historians, gateways and middle servers coexist. In practice, the Cloud may also represent internal Enterprise systems, concentrated in regional or global corporate data centers, where larger historians, Big Data and analytical systems reside.

In practical terms, this means that:

	Intra-layer communication and data exchange:

	At the Edge, microservices are installed on devices, sensors and actuators.

	In the Fog, data is collected and aggregated in gateways and regional servers.

	In the Cloud, data is distributed and analysed on multiple servers, such as Big Data Systems and Data Historians.

	Inter-layer communication and data exchange:

	From Edge to Fog, data is retrieved from multiple sensors and devices and it is aggregated on resilient and highly available middle servers and gateways, either in traditional Data Historians and in the new edge of Machine Learning systems.

	From Fog to Edge, configuration information, metadata and other valuable data is transferred to sensors and devices.

	From Fog to Cloud, the data collected and optionally transformed is transferred to more powerful distributed Cloud and Enterprise systems.

	From Cloud to Fog, results of complex analysis and other valuable information are sent to the designated gateways and middle servers that will interact with the Edge.

	Intra-layer service distribution:

	A microservice architecture based on secure communication allows lightweight service distribution and information exchange among Edge to Edge devices.

	Fledge provides high availability, scalability and data distribution among Fog-to-Fog systems. Due to its portability and modularity, Fledge can be installed on a large number of intermediate servers and gateways, as application instances, appliances, containers or virtualized environments.

	Cloud to Cloud Fledge server capabilities provide scalability and elasticity in data storage, retrieval and analytics. The data collected at the Edge and Fog, also combined with external data, can be distributed to multiple systems within a Data Center and replicated to multiple Data Centers to guarantee local and faster access.

All these operations are scheduled, automated and executed securely, unattended and in a transactional fashion (i.e. the system can always revert to a previous state in case of failures or unexpected events).

Fledge Features

In a nutshell, these are main features of Fledge:

	Transactional, always on, server platform designed to work unattended and with zero maintenance.

	Microservice architecture with secured inter-communication:

	Core System

	Storage Layer

	South side, sensors and device communication

	North side, Cloud and Enterprise communication

	Application Modules, internal application logic

	Pluggable modules for:

	South side: multiple, data and metadata bi-directional communication

	North side: multiple, data and metadata bi-directional communication

	East/West side: IN/OUT Communicator with external applications

	Plus:

	Data and communication authentication

	Data and status monitoring and alerting

	Data transformation

	Data storage and retrieval

	Small memory and processing footprint. Fledge can be installed and executed on inexpensive Edge devices; microservices can be distributed on sensors and actuator boards.

	Resilient and optionally highly available.

	Discoverable and cluster-based.

	Based on APIs (RESTful and non-RESTful) to communicate with sensors and other devices, to interact with user applications, to manage the platform and to be integrated with a Cloud or Data Center-based data infrastructure.

	Hardened with default secure communication that can be optionally relaxed.

 Building Fledge

Building Fledge

Let’s get started! In this chapter we will see where to find and how to build, install and run Fledge for the first time.

Fledge Platforms

Due to the use of standard libraries, Fledge can run on a large number of platforms and operating environments, but its primary target is Linux distributions.
 Our testing environment includes Ubuntu 18.04 LTS, Ubuntu 20.04 LTS and Raspbian, but we have installed and tested Fledge on other Linux distributions. In addition to the native support, Fledge can also run on Virtual Machines, Docker and LXC containers.

Requirements

Fledge requires a number of software packages and libraries to be installed in order to be built, the process of installing these has been streamlined and automated for all the currently supported platforms. A single script, requirements.sh can be run and this will install all of the packages needed to to build and run Fledge.

Building Fledge

In this section we will describe how to build Fledge on any of the supported platforms. If you are not familiar with Linux and you do not want to build Fledge from the source code, you can download a ready-made package (the list of packages is available here).

Obtaining the Source Code

Fledge is available on GitHub. The link to the repository is https://github.com/fledge-iot/fledge. In order to clone the code in the repository, type:

$ git clone https://github.com/fledge-iot/fledge.git
Cloning into 'fledge'...
remote: Enumerating objects: 83394, done.
remote: Counting objects: 100% (2093/2093), done.
remote: Compressing objects: 100% (903/903), done.
remote: Total 83394 (delta 1349), reused 1840 (delta 1161), pack-reused 81301
Receiving objects: 100% (83394/83394), 34.85 MiB | 7.38 MiB/s, done.
Resolving deltas: 100% (55599/55599), done.
$

The code should now be loaded on your machine in a directory called fledge. The name of the repository directory is fledge:

$ ls -l fledge
total 228
drwxrwxr-x 7 fledge fledge 4096 Aug 26 11:20 C
-rw-rw-r-- 1 fledge fledge 1659 Aug 26 11:20 CMakeLists.txt
drwxrwxr-x 2 fledge fledge 4096 Aug 26 11:20 contrib
-rw-rw-r-- 1 fledge fledge 4786 Aug 26 11:20 CONTRIBUTING.md
drwxrwxr-x 4 fledge fledge 4096 Aug 26 11:20 data
drwxrwxr-x 2 fledge fledge 4096 Aug 26 11:20 dco-signoffs
drwxrwxr-x 10 fledge fledge 4096 Aug 26 11:20 docs
-rw-rw-r-- 1 fledge fledge 108680 Aug 26 11:20 doxy.config
drwxrwxr-x 3 fledge fledge 4096 Aug 26 11:20 examples
drwxrwxr-x 4 fledge fledge 4096 Aug 26 11:20 extras
-rw-rw-r-- 1 fledge fledge 11346 Aug 26 11:20 LICENSE
-rw-rw-r-- 1 fledge fledge 24216 Aug 26 11:20 Makefile
-rwxrwxr-x 1 fledge fledge 310 Aug 26 11:20 mkversion
drwxrwxr-x 4 fledge fledge 4096 Aug 26 11:20 python
-rw-rw-r-- 1 fledge fledge 9292 Aug 26 11:20 README.rst
-rwxrwxr-x 1 fledge fledge 8177 Aug 26 11:20 requirements.sh
drwxrwxr-x 8 fledge fledge 4096 Aug 26 11:20 scripts
drwxrwxr-x 4 fledge fledge 4096 Aug 26 11:20 tests
drwxrwxr-x 3 fledge fledge 4096 Aug 26 11:20 tests-manual
-rwxrwxr-x 1 fledge fledge 38 Aug 26 11:20 VERSION
$

Selecting the Correct Version

The git repository created on your local machine, creates several branches. More specifically:

	The main branch is the latest, stable version. You should use this branch if you are interested in using Fledge with the last release features and fixes.

	The develop branch is the current working branch used by our developers. The branch contains the latest version and features, but it may be unstable and there may be issues in the code. You may consider to use this branch if you are curious to see one of the latest features we are working on, but you should not use this branch in production.

	The branches with versions majorID.minorID or majorID.minorID.patchID, such as 1.0 or 1.4.2, contain the code of that specific version. You may use one of these branches if you need to check the code used in those versions.

	The branches with name FOGL-XXXX, where ‘XXXX’ is a sequence number, are working branches used by developers and contributors to add features, fix issues, modify and release code and documentation of Fledge. Those branches are free for you to see and learn from the work of the contributors.

Note that the default branch is develop.

Once you have cloned the Fledge project, in order to check the branches available, use the git branch command:

$ pwd
/home/ubuntu
$ cd fledge
$ git branch --all
* develop
remotes/origin/1.0
...
remotes/origin/FOGL-822
remotes/origin/FOGL-823
remotes/origin/HEAD -> origin/develop
...
remotes/origin/develop
remotes/origin/main
$

Assuming you want to use the latest released, stable version, use the git checkout command to select the master branch:

$ git checkout main
Branch main set up to track remote branch main from origin.
Switched to a new branch 'main'
$

You can always use the git status command to check the branch you have checked out.

Building Fledge

You are now ready to build your first Fledge project.

	Move to the fledge project directory

	Load the requirements needed to build Fledge by typing

$ sudo ./requirements.sh
[sudo] password for john:
Platform is Ubuntu, Version: 18.04
apt 1.6.14 (amd64)
Reading package lists...
Building dependency tree...
...

	Type the make command and let the magic happen.

$ make
Building Fledge version X.X., DB schema X
scripts/certificates "fledge" "365"
Creating a self signed SSL certificate ...
Certificates created successfully, and placed in data/etc/certs
scripts/auth_certificates ca "ca" "365"
...
Successfully installed aiohttp-3.8.1 aiohttp-cors-0.7.0 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 attrs-22.1.0 cchardet-2.1.4 certifi-2022.6.15 charset-normalizer-2.1.1 frozenlist-1.2.0 idna-3.3 idna-ssl-1.1.0 ifaddr-0.2.0 multidict-5.2.0 pyjq-2.3.1 pyjwt-1.6.4 requests-2.27.1 requests-toolbelt-0.9.1 six-1.16.0 typing-extensions-4.1.1 urllib3-1.26.12 yarl-1.7.2 zeroconf-0.27.0
$

Depending on the version of Ubuntu or other Linux distribution you are using, you may have found some issues. For example, there is a bug in the GCC compiler that raises a warning under specific circumstances. The output of the build will be something like:

/home/ubuntu/Fledge/C/services/storage/storage.cpp:97:14: warning: ignoring return value of ‘int dup(int)’, declared with attribute warn_unused_result [-Wunused-result]
 (void)dup(0); // stdout GCC bug 66425 produces warning
 ^
/home/ubuntu/Fledge/C/services/storage/storage.cpp:98:14: warning: ignoring return value of ‘int dup(int)’, declared with attribute warn_unused_result [-Wunused-result]
 (void)dup(0); // stderr GCC bug 66425 produces warning
 ^

The bug is documented here. For our project, you should ignore it.

The other issue is related to the version of pip (more specifically pip3), the Python package manager. If you see this warning in the middle of the build output:

/usr/lib/python3.6/distutils/dist.py:261: UserWarning: Unknown distribution option: 'python_requires'
 warnings.warn(msg)

…and this output at the end of the build process:

You are using pip version 8.1.1, however version 9.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

In this case, what you need to do is to upgrade the pip software for Python3:

$ sudo pip3 install --upgrade pip
Collecting pip
 Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)
 100% |████████████████████████████████| 1.3MB 1.1MB/s
Installing collected packages: pip
Successfully installed pip-9.0.1
$

At this point, run the make command again and the Python warning should disappear.

Testing Fledge from the Build Environment

If you are eager to test Fledge straight away, you can do so! All you need to do is to set the FLEDGE_ROOT environment variable and you are good to go. Stay in the Fledge project directory, set the environment variable with the path to the Fledge directory and start fledge with the fledge start command:

$ pwd
/home/ubuntu/fledge
$ export FLEDGE_ROOT=/home/ubuntu/fledge
$./scripts/fledge start
Starting Fledge vX.X.....
Fledge started.
$

You can check the status of Fledge with the fledge status command. For few seconds you may see service starting, then it will show the status of the Fledge services and tasks:

$./scripts/fledge status
Fledge starting.
$
$ scripts/fledge status
Fledge vX.X.X running.
Fledge Uptime: 9065 seconds.
Fledge records: 86299 read, 86851 sent, 0 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.storage --address=0.0.0.0 --port=42583
fledge.services.south --port=42583 --address=127.0.0.1 --name=Sine
fledge.services.notification --port=42583 --address=127.0.0.1 --name=Fledge Notifications
=== Fledge tasks:
fledge.tasks.purge --port=42583 --address=127.0.0.1 --name=purge
tasks/sending_process --port=42583 --address=127.0.0.1 --name=PI Server
$

If you are curious to see a proper output from Fledge, you can query the Core microservice using the REST API:

$ curl -s http://localhost:8081/fledge/ping ; echo
{"uptime": 10480, "dataRead": 0, "dataSent": 0, "dataPurged": 0, "authenticationOptional": true, "serviceName": "Fledge", "hostName": "fledge", "ipAddresses": ["x.x.x.x", "x:x:x:x:x:x:x:x"], "health": "green", "safeMode": false}
$
$ curl -s http://localhost:8081/fledge/statistics ; echo
[{"key": "BUFFERED", "description": "Readings currently in the Fledge buffer", "value": 0}, {"key": "DISCARDED", "description": "Readings discarded by the South Service before being placed in the buffer. This may be due to an error in the readings themselves.", "value": 0}, {"key": "PURGED", "description": "Readings removed from the buffer by the purge process", "value": 0}, {"key": "READINGS", "description": "Readings received by Fledge", "value": 0}, {"key": "UNSENT", "description": "Readings filtered out in the send process", "value": 0}, {"key": "UNSNPURGED", "description": "Readings that were purged from the buffer before being sent", "value": 0}]
$

Congratulations! You have installed and tested Fledge! If you want to go extra mile (and make the output of the REST API more readable, download the jq JSON processor and pipe the output of the curl command to it:

$ sudo apt install jq
...
$
$ curl -s http://localhost:8081/fledge/statistics | jq
[
 {
 "key": "BUFFERED",
 "description": "Readings currently in the Fledge buffer",
 "value": 0
 },
 {
 "key": "DISCARDED",
 "description": "Readings discarded by the South Service before being placed in the buffer. This may be due to an error in the readings themselves.",
 "value": 0
 },
 {
 "key": "PURGED",
 "description": "Readings removed from the buffer by the purge process",
 "value": 0
 },
 {
 "key": "READINGS",
 "description": "Readings received by Fledge",
 "value": 0
 },
 {
 "key": "UNSENT",
 "description": "Readings filtered out in the send process",
 "value": 0
 },
 {
 "key": "UNSNPURGED",
 "description": "Readings that were purged from the buffer before being sent",
 "value": 0
 }
]
$

Now I Want to Stop Fledge!

Easy, you have learnt fledge start and fledge status, simply type fledge stop:

$ scripts/fledge stop
Stopping Fledge.........
Fledge stopped.
$

As a next step, let’s install Fledge!

Appendix: Setting the PostgreSQL Database

If you intend to use the PostgreSQL database as storage engine, make sure that PostgreSQL is installed and running correctly:

$ sudo systemctl status postgresql
● postgresql.service - PostgreSQL RDBMS
 Loaded: loaded (/lib/systemd/system/postgresql.service; enabled; vendor preset: enabled)
 Active: active (exited) since Fri 2017-12-08 15:56:07 GMT; 15min ago
 Main PID: 14572 (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/postgresql.service

Dec 08 15:56:07 ubuntu systemd[1]: Starting PostgreSQL RDBMS...
Dec 08 15:56:07 ubuntu systemd[1]: Started PostgreSQL RDBMS.
Dec 08 15:56:11 ubuntu systemd[1]: Started PostgreSQL RDBMS.
$
$ ps -ef | grep postgres
postgres 14806 1 0 15:56 ? 00:00:00 /usr/lib/postgresql/9.5/bin/postgres -D /var/lib/postgresql/9.5/main -c config_file=/etc/postgresql/9.5/main/postgresql.conf
postgres 14808 14806 0 15:56 ? 00:00:00 postgres: checkpointer process
postgres 14809 14806 0 15:56 ? 00:00:00 postgres: writer process
postgres 14810 14806 0 15:56 ? 00:00:00 postgres: wal writer process
postgres 14811 14806 0 15:56 ? 00:00:00 postgres: autovacuum launcher process
postgres 14812 14806 0 15:56 ? 00:00:00 postgres: stats collector process
ubuntu 15198 1225 0 17:22 pts/0 00:00:00 grep --color=auto postgres
$

PostgreSQL 13 is the version available for Ubuntu 18.04 when we have published this page. Other versions of PostgreSQL, such as 9.6 to newer version work just fine.

 When you install the Ubuntu package, PostreSQL is set for a peer authentication, i.e. the database user must match with the Linux user. Other packages may differ. You may quickly check the authentication mode set in the pg_hba.conf file. The file is in the same directory of the postgresql.conf file you may see as output from the ps command shown above, in our case /etc/postgresql/9.5/main:

$ sudo grep '^local' /etc/postgresql/9.5/main/pg_hba.conf
local all postgres peer
local all all peer
$

The installation procedure also creates a Linux postgres user. In order to check if everything is set correctly, execute the psql utility as sudo user:

$ sudo -u postgres psql -l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+-----------------------
 postgres | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
 template0 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
(3 rows)
$

Encoding and collations may differ, depending on the choices made when you installed your operating system.
 Before you proceed, you must create a PostgreSQL user that matches your Linux user. Supposing that your user is <fledge_user>, type:

$ sudo -u postgres createuser -d <fledge_user>

The -d argument is important because the user will need to create the Fledge database.

	A more generic command is:
	$ sudo -u postgres createuser -d $(whoami)

Finally, you should now be able to see the list of the available databases from your current user:

$ psql -l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+-----------------------
 postgres | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
 template0 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
(3 rows)
$

 Fledge Installation

Fledge Installation

Installing Fledge using defaults is straightforward: depending on the usage, you may install a new version from source or from a pre-built package. In environments where the defaults do not fit, you will need to execute few more steps. This chapter describes the default installation of Fledge and the most common scenarios where administrators need to modify the default behavior.

Installing Fledge from a Build

Once you have built Fledge following the instructions presented here, you can execute the default installation with the make install command. By default, Fledge is installed from build in the root directory, under /usr/local/fledge. Since the root directory / is a protected a system location, you will need superuser privileges to execute the command. Therefore, if you are not superuser, you should login as superuser or you should use the sudo command.

$ sudo make install
mkdir -p /usr/local/fledge
Installing Fledge version 1.8.0, DB schema 2
-- Fledge DB schema check OK: Info: /usr/local/fledge is empty right now. Skipping DB schema check.
cp VERSION /usr/local/fledge
cd cmake_build ; cmake /home/fledge/Fledge/
-- Boost version: 1.58.0
-- Found the following Boost libraries:
-- system
-- thread
-- chrono
-- date_time
-- atomic
-- Found SQLite version 3.11.0: /usr/lib/x86_64-linux-gnu/libsqlite3.so
-- Boost version: 1.58.0
-- Found the following Boost libraries:
-- system
-- thread
-- chrono
-- date_time
-- atomic
-- Configuring done
-- Generating done
-- Build files have been written to: /home/fledge/Fledge/cmake_build
cd cmake_build ; make
make[1]: Entering directory '/home/fledge/Fledge/cmake_build'
...
$

These are the main steps of the installation:

	Create the /usr/local/fledge directory, if it does not exist

	Build the code that has not been compiled and built yet

	Create all the necessary destination directories and copy the executables, scripts and configuration files

	Change the ownership of the data directory, if the install user is a superuser (we recommend to run Fledge as regular user, i.e. not as superuser).

Fledge is now present in /usr/local/fledge and ready to start. The start script is in the /usr/local/fledge/bin directory

$ cd /usr/local/fledge/
$ ls -l
total 32
drwxr-xr-x 2 root root 4096 Apr 24 18:07 bin
drwxr-xr-x 4 fledge fledge 4096 Apr 24 18:07 data
drwxr-xr-x 4 root root 4096 Apr 24 18:07 extras
drwxr-xr-x 4 root root 4096 Apr 24 18:07 plugins
drwxr-xr-x 3 root root 4096 Apr 24 18:07 python
drwxr-xr-x 6 root root 4096 Apr 24 18:07 scripts
drwxr-xr-x 2 root root 4096 Apr 24 18:07 services
-rwxr-xr-x 1 root root 37 Apr 24 18:07 VERSION
$
$ bin/fledge
Usage: fledge {start|start --safe-mode|stop|status|reset|kill|help|version}
$
$ bin/fledge help
Usage: fledge {start|start --safe-mode|stop|status|reset|kill|help|version}
Fledge v1.3.1 admin script
The script is used to start Fledge
Arguments:
 start - Start Fledge core (core will start other services).
 start --safe-mode - Start in safe mode (only core and storage services will be started)
 stop - Stop all Fledge services and processes
 kill - Kill all Fledge services and processes
 status - Show the status for the Fledge services
 reset - Restore Fledge factory settings
 WARNING! This command will destroy all your data!
 version - Print Fledge version
 help - This text
$
$ bin/fledge start
Starting Fledge......
Fledge started.
$

Environment Variables

In order to operate, Fledge requires two environment variables:

	FLEDGE_ROOT: the root directory for Fledge. The default is /usr/local/fledge

	FLEDGE_DATA: the data directory. The default is $FLEDGE_ROOT/data, hence whichever value FLEDGE_ROOT has plus the data sub-directory, or /usr/local/fledge/data in case FLEDGE_ROOT is set as default value.

The setenv.sh Script

In the extras/scripts folder of the newly installed Fledge you can find the setenv.sh script. This script can be used to set the environment variables used by Fledge and update your PATH environment variable.

You can call the script from your shell or you can add the same command to your .profile script:

$ cat /usr/local/fledge/extras/scripts/setenv.sh
#!/bin/sh

##--
Copyright (c) 2018 OSIsoft, LLC
##
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
##
http://www.apache.org/licenses/LICENSE-2.0
##
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
##--

#
This script sets the user environment to facilitate the administration
of Fledge
#
You can execute this script from shell, using for example this command:
#
source /usr/local/fledge/extras/scripts/setenv.sh
#
or you can add the same command at the bottom of your profile script
{HOME}/.profile.
#

export FLEDGE_ROOT="/usr/local/fledge"
export FLEDGE_DATA="${FLEDGE_ROOT}/data"

export PATH="${FLEDGE_ROOT}/bin:${PATH}"
export LD_LIBRARY_PATH="${FLEDGE_ROOT}/lib:${LD_LIBRARY_PATH}"

$ source /usr/local/fledge/extras/scripts/setenv.sh
$

The fledge.service Script

Another file available in the extras/scripts folder is the fledge.service script. This script can be used to set Fledge as a Linux service. If you wish to do so, we recommend to install the Fledge package, but if you have a special build or for other reasons you prefer to work with Fledge built from source, this script will be quite helpful.

You can install Fledge as a service following these simple steps:

	After the make install command, copy fledge.service with a simple name fledge in the /etc/init.d folder.

	Execute the command systemctl enable fledge.service to enable Fledge as a service

	Execute the command systemctl start fledge.service if you want to start Fledge

$ sudo cp /usr/local/fledge/extras/scripts/fledge.service /etc/init.d/fledge
$ sudo systemctl status fledge.service
● fledge.service
 Loaded: not-found (Reason: No such file or directory)
 Active: inactive (dead)
$ sudo systemctl enable fledge.service
fledge.service is not a native service, redirecting to systemd-sysv-install
Executing /lib/systemd/systemd-sysv-install enable fledge
$ sudo systemctl status fledge.service
● fledge.service - LSB: Fledge
 Loaded: loaded (/etc/init.d/fledge; bad; vendor preset: enabled)
 Active: inactive (dead)
 Docs: man:systemd-sysv-generator(8)
$ sudo systemctl start fledge.service
$ sudo systemctl status fledge.service
● fledge.service - LSB: Fledge
 Loaded: loaded (/etc/init.d/fledge; generated)
 Active: active (running) since Thu 2020-05-28 18:42:07 IST; 9min ago
 Docs: man:systemd-sysv-generator(8)
 Process: 5047 ExecStart=/etc/init.d/fledge start (code=exited, status=0/SUCCESS)
 Tasks: 27 (limit: 4680)
 CGroup: /system.slice/fledge.service
 ├─5123 python3 -m fledge.services.core
 ├─5331 /usr/local/fledge/services/fledge.services.storage --address=0.0.0.0 --port=34827
 ├─8119 /bin/sh tasks/north_c --port=34827 --address=127.0.0.1 --name=OMF to PI north
 └─8120 ./tasks/sending_process --port=34827 --address=127.0.0.1 --name=OMF to PI north

...
$

Installing the Debian Package

We have versions of Fledge available as Debian packages for you. Check the Downloads page to review which versions and platforms are available.

Obtaining and Installing the Debian Package

Check the Downloads page to find the package to install.

Once you have downloaded the package, install it using the apt-get command. You can use apt-get to install a local Debian package and automatically retrieve all the necessary packages that are defined as pre-requisites for Fledge. Note that you may need to install the package as superuser (or by using the sudo command) and move the package to the apt cache directory first (/var/cache/apt/archives).

For example, if you are installing Fledge on an Intel x86_64 machine, you can type this command to download the package:

$ wget https://fledge-iot.s3.amazonaws.com/1.8.0/ubuntu1804/x86_64/fledge-1.8.0_x86_64_ubuntu1804.tgz
--2020-05-28 18:24:12-- https://fledge-iot.s3.amazonaws.com/1.8.0/ubuntu1804/x86_64/fledge-1.8.0_x86_64_ubuntu1804.tgz
Resolving fledge-iot.s3.amazonaws.com (fledge-iot.s3.amazonaws.com)... 52.217.40.188
Connecting to fledge-iot.s3.amazonaws.com (fledge-iot.s3.amazonaws.com)|52.217.40.188|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 24638625 (23M) [application/x-tar]
Saving to: ‘fledge-1.8.0_x86_64_ubuntu1804.tgz’

fledge-1.8.0_x86_64_ubuntu1804.tg 100%[==>] 23.50M 4.30MB/s in 8.3s

2020-05-28 18:24:26 (2.84 MB/s) - ‘fledge-1.8.0_x86_64_ubuntu1804.tgz’ saved [24638625/24638625]
$

We recommend to execute an update-upgrade-update of the system first, then you may untar the fledge-1.8.0_x86_64_ubuntu1804.tgz file and copy the Fledge package in the apt cache directory and install it.

$ sudo apt update
Hit:1 http://gb.archive.ubuntu.com/ubuntu xenial InRelease
...
$ sudo apt upgrade
...
$ sudo apt update
...
$ sudo cp fledge-1.8.0-x86_64.deb /var/cache/apt/archives/.
...
$ sudo apt install /var/cache/apt/archives/fledge-1.8.0-x86_64.deb
Reading package lists... Done
Building dependency tree
Reading state information... Done
Note, selecting 'fledge' instead of '/var/cache/apt/archives/fledge-1.8.0-x86_64.deb'
The following packages were automatically installed and are no longer required:
...
Unpacking fledge (1.8.0) ...
Setting up fledge (1.8.0) ...
Resolving data directory
Data directory does not exist. Using new data directory
Installing service script
Generating certificate files
Certificate files do not exist. Generating new certificate files.
Creating a self signed SSL certificate ...
Certificates created successfully, and placed in data/etc/certs
Generating auth certificate files
CA Certificate file does not exist. Generating new CA certificate file.
Creating ca SSL certificate ...
ca certificate created successfully, and placed in data/etc/certs
Admin Certificate file does not exist. Generating new admin certificate file.
Creating user SSL certificate ...
user certificate created successfully for admin, and placed in data/etc/certs
User Certificate file does not exist. Generating new user certificate file.
Creating user SSL certificate ...
user certificate created successfully for user, and placed in data/etc/certs
Setting ownership of Fledge files
Calling Fledge package update script
Linking update task
Changing setuid of update_task.apt
Removing task/update
Create link file
Copying sudoers file
Setting setuid bit of cmdutil
Enabling Fledge service
fledge.service is not a native service, redirecting to systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable fledge
Starting Fledge service
$

As you can see from the output, the installation automatically registers Fledge as a service, so it will come up at startup and it is already up and running when you complete the command.

Check the newly installed package:

$ sudo dpkg -l | grep fledge
ii fledge 1.8.0 amd64 Fledge, the open source platform for the Internet of Things
$

You can also check the service currently running:

$ sudo systemctl status fledge.service
● fledge.service - LSB: Fledge
 Loaded: loaded (/etc/init.d/fledge; generated)
 Active: active (running) since Thu 2020-05-28 18:42:07 IST; 9min ago
 Docs: man:systemd-sysv-generator(8)
 Process: 5047 ExecStart=/etc/init.d/fledge start (code=exited, status=0/SUCCESS)
 Tasks: 27 (limit: 4680)
 CGroup: /system.slice/fledge.service
 ├─5123 python3 -m fledge.services.core
 ├─5331 /usr/local/fledge/services/fledge.services.storage --address=0.0.0.0 --port=34827
 ├─8119 /bin/sh tasks/north_c --port=34827 --address=127.0.0.1 --name=OMF to PI north
 └─8120 ./tasks/sending_process --port=34827 --address=127.0.0.1 --name=OMF to PI north

...
$

Check if Fledge is up and running with the fledge command:

$ /usr/local/fledge/bin/fledge status
Fledge v1.8.0 running.
Fledge Uptime: 162 seconds.
Fledge records: 0 read, 0 sent, 0 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
...
=== Fledge tasks:
...
$

Don’t forget to add the setenv.sh available in the /usr/local/fledge/extras/scripts* directory to your .profile user startup script if you want to have an easy access to the Fledge tools, and…

…Congratulations! This is all you need to do, now Fledge is ready to run.

Upgrading or Downgrading Fledge

Upgrading or downgrading Fledge, starting from version 1.2, is as easy as installing it from scratch: simply follow the instructions in the previous section regarding the installation and the package will take care of the upgrade/downgrade path. The installation will not proceed if there is not a path to upgrade or downgrade from the currently installed version. You should still check the pre-requisites before you apply the upgrade. Clearly the old data will not be lost, there will be a schema upgrade/downgrade, if required.

Uninstalling the Debian Package

Use the apt or the apt-get command to uninstall Fledge:

$ sudo apt purge fledge
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 libmodbus-dev libmodbus5
Use 'sudo apt autoremove' to remove them.
The following packages will be REMOVED:
 fledge*
0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n] y
(Reading database ... 160251 files and directories currently installed.)
Removing fledge (1.8.0) ...
Fledge is currently running.
Stop Fledge service.
Kill Fledge.
Disable Fledge service.
fledge.service is not a native service, redirecting to systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install disable fledge
Remove Fledge service script
Reset systemctl
Cleanup of files
Remove fledge sudoers file
(Reading database ... 159822 files and directories currently installed.)
Purging configuration files for fledge (1.8.0) ...
Cleanup of files
Remove fledge sudoers file
dpkg: warning: while removing fledge, directory '/usr/local/fledge' not empty so not removed
$

The command also removes the service installed.
 You may notice the warning in the last row of the command output: this is due to the fact that the data directory (/usr/local/fledge/data by default) has not been removed, in case an administrator might want to analyze or reuse the data.

 Testing Fledge

Testing Fledge

After the installation, you are now ready to test Fledge. An end-to-end test involves three types of tests:

	The South side, i.e. testing the collection of information from South microservices and associated plugins

	The North side, i.e. testing the tasks that send data North to historians, databases, Enterprise and Cloud systems

	The East/West side, i.e. testing the interaction of external applications with Fledge via REST API.

This chapter describes how to tests Fledge in these three directions.

First Checks: Fledge Status

Before we start, let’s make sure that Fledge is up and running and that we have the tasks and services in place to execute the tests.
 First, run the fledge status command to check if Fledge has already started. The result of the command can be:

	Fledge not running. - it means that we must start Fledge with fledge start

	Fledge starting. - it means that we have started Fledge but the starting phase has not been completed yet. You should wait for a little while (from few seconds to about a minute) to see Fledge running.

	Fledge running. - (plus extra rows giving the uptime and other info. It means that Fledge is up and running, hence it is ready for use.

When you have a running Fledge, check the extra information provided by the fledge status command:

$ fledge status
Fledge v1.8.0 running.
Fledge Uptime: 9065 seconds.
Fledge records: 86299 read, 86851 sent, 0 purged.
Fledge does not require authentication.
=== Fledge services:
fledge.services.core
fledge.services.storage --address=0.0.0.0 --port=42583
fledge.services.south --port=42583 --address=127.0.0.1 --name=Sine
fledge.services.notification --port=42583 --address=127.0.0.1 --name=Fledge Notifications
=== Fledge tasks:
fledge.tasks.purge --port=42583 --address=127.0.0.1 --name=purge
tasks/sending_process --port=42583 --address=127.0.0.1 --name=PI Server
$

Let’s analyze the output of the command:

	Fledge running. - The Fledge Core microservice is running on this machine and it is responding to the status command as running because other basic microservices are also running.

	Fledge uptime: 282 seconds. - This is a simple uptime in second provided by the Core microservice. It is equivalent to the ping method called via the REST API.

	Fledge records: - This is a summary of the number of records received from sensors and devices (South), sent to other services (North) and purged from the buffer.

	Fledge authentication - This row describes if a user or an application must authenticate to ogLAMP in order to operate with the REST API.

The following lines provide a list of the modules running in this installation of Fledge. They are separated by dots and described in this way:

	The prefix fledge is always present and identifies the Fledge modules.

	The following term describes the type of module: services for microservices, tasks for tasks etc.

	The following term is the name of the module: core, storage, north, south, app, alert

	The last term is the name of the plugin executed as part of the module.

	Extra arguments may be available: they are the arguments passed to the module by the core when it is launched.

	=== Fledge services: - This block contains the list of microservices running in the Fledge platform.

	fledge.services.core is the Core microservice itself

	fledge.services.south --port=44180 --address=127.0.0.1 --name=COAP - This South microservice is a listener of data pushed to Fledge via a CoAP protocol

	=== Fledge tasks: - This block contains the list of tasks running in the Fledge platform.

	fledge.tasks.north.sending_process ... --name=sending process is a North task that prepares and sends data collected by the South modules to the OSIsoft PI System in OMF (OSIsoft Message Format).

	fledge.tasks.north.sending_process ... --name=statistics to pi is a North task that prepares and sends the internal statistics to the OSIsoft PI System in OMF (OSIsoft Message Format).

Hello, Foggy World!

The output of the fledge status command gives you an idea of the modules running in your machine, but let’s try to get more information from Fledge.

The Fledge REST API

First of all, we need to familiarize with the Fledge REST API. The API provides a set of methods used to monitor and administer the status of Fledge. Users and developers can also use the API to interact with external applications.

This is a short list of the methods available to the administrators. A more detailed list will be available soon:
- ping provides the uptime of the Fledge Core microservice
- statistics provides a set of statistics of the Fledge platform, such as data collected, sent, purged, rejected etc.
- asset provides a list of asset that have readings buffered in Fledge.
- category provides a list of the configuration of the modules and components in Fledge.

Useful Tools

Systems Administrators and Developers may already have their favorite tools to interact with a REST API, and they can probably use the same tools with Fledge. If you are not familiar with any tool, we recommend one of these:

	If you are familiar with the Linux shell and command lines, curl is the simplest and most useful tool available. It comes with every Linux distribution (or you can easily add it if it is not available in the default installation.

	If you prefer to use a browser-like interface, we recommend Postman. Postman is an application available on Linux, MacOS and Windows and allows you to save queries, results, and run a set of queries with a single click.

Hello World!

Let’s execute the ping method. First, you must identify the IP address where Fledge is running. If you have installed Fledge on your local machine, you can use localhost. Alternatively, check the IP address of the machine where Fledge is installed.

Note

This version of Fledge does not have any security setup by default, therefore you may be able to access the entry point for the REST API by any external application, but there may be security setting on your operating environment that prevent access to specific ports from external applications. If you receive an error using the ping method, and the fledge status command says that everything is running, it is likely that you are experiencing a security issue.

The default port for the REST API is 8081. Using curl, try this command:

$ curl -s http://localhost:8081/fledge/ping ; echo
{"uptime": 10480, "dataRead": 0, "dataSent": 0, "dataPurged": 0, "authenticationOptional": true, "serviceName": "Fledge", "hostName": "fledge", "ipAddresses": ["x.x.x.x", "x:x:x:x:x:x:x:x"], "health": "green", "safeMode": false}
$

The echo at the end of the line is simply used to add an extra new line to the output.

If you are using Postman, select the GET method and type http://localhost:8081/fledge/ping in the URI address input. If you are accessing a remote machine, replace localhost with the correct IP address. The output should be something like:

[image: postman_ping] [https://s3.amazonaws.com/fledge-iot/readthedocs/images/05_postman_ping.jpg]

This is the first message you may receive from Fledge!

Hello from the Southern Hemisphere of the Fledge World

Let’s now try something more exciting. The primary job of Fledge is to collect data from the Edge (we call it South), buffer it in our storage engine and then we send the data to Cloud historians and Enterprise Servers (we call them North). We also offer information to local or networked applications, something we call East or West.

In order to insert data you may need a sensor or a device that generates data. If you want to try Fledge but you do not have any sensor at hand, do not worry, we have a tool that can generate data as if it is a sensor.

fogbench: a Brief Intro

Fledge comes with a little but pretty handy tool called fogbench. The tools is written in Python and it uses the same libraries of other modules of Fledge, therefore no extra libraries are needed. With fogbench you can do many things, like inserting data stored in files, running benchmarks to understand how Fledge performs in a given environment, or test an end-to-end installation.

Note: This following instructions assume you have downloaded and installed the CoAP south plugin from https://github.com/fledge-iot/fledge-south-coap.

$ git clone https://github.com/fledge-iot/fledge-south-coap
$ cd fledge-south-coap
$ sudo cp -r python/fledge/plugins/south/coap /usr/local/fledge/python/fledge/plugins/south/
$ sudo cp python/requirements-coap.txt /usr/local/fledge/python/
$ sudo pip3 install -r /usr/local/fledge/python/requirements-coap.txt
$ sudo chown -R root:root /usr/local/fledge/python/fledge/plugins/south/coap
$ curl -sX POST http://localhost:8081/fledge/service -d '{"name": "CoAP", "type": "south", "plugin": "coap", "enabled": true}'

Depending on your environment, you can call fogbench in one of those ways:

	In a development environment, use the script scripts/extras/fogbench, inside your project repository (remember to set the FLEDGE_ROOT environment variable with the path to your project repository folder).

	In an environment deployed with sudo make install, use the script bin/fogbench.

You may call the fogbench tool like this:

$ /usr/local/fledge/bin/fogbench
>>> Make sure south CoAP plugin service is running & listening on specified host and port
usage: fogbench [-h] [-v] [-k {y,yes,n,no}] -t TEMPLATE [-o OUTPUT]
 [-I ITERATIONS] [-O OCCURRENCES] [-H HOST] [-P PORT]
 [-i INTERVAL] [-S {total}]
fogbench: error: the following arguments are required: -t/--template
$

…or more specifically, when you call invoke fogbench with the –help or -h argument:

$ /usr/local/fledge/bin/fogbench -h
>>> Make sure south CoAP plugin service is running & listening on specified host and port
usage: fogbench [-h] [-v] [-k {y,yes,n,no}] -t TEMPLATE [-o OUTPUT]
 [-I ITERATIONS] [-O OCCURRENCES] [-H HOST] [-P PORT]
 [-i INTERVAL] [-S {total}]

fogbench -- a Python script used to test Fledge (simulate payloads)

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 -k {y,yes,n,no}, --keep {y,yes,n,no}
 Do not delete the running sample (default: no)
 -t TEMPLATE, --template TEMPLATE
 Set the template file, json extension
 -o OUTPUT, --output OUTPUT
 Set the statistics output file
 -I ITERATIONS, --iterations ITERATIONS
 The number of iterations of the test (default: 1)
 -O OCCURRENCES, --occurrences OCCURRENCES
 The number of occurrences of the template (default: 1)
 -H HOST, --host HOST CoAP server host address (default: localhost)
 -P PORT, --port PORT The Fledge port. (default: 5683)
 -i INTERVAL, --interval INTERVAL
 The interval in seconds for each iteration (default:
 0)
 -S {total}, --statistics {total}
 The type of statistics to collect (default: total)

The initial version of fogbench is meant to test the sensor/device interface
of Fledge using CoAP
$

In order to use fogbench you need a template file. The template is a set of JSON elements that are used to create a random set of values that simulate the data generated by one or more sensors. Fledge comes with a template file named fogbench_sensor_coap.template.json. The template is located here:

	In a development environment, look in data/extras/fogbench in the project repository folder.

	In an environment deployed using sudo make install, look in $FLEDGE_DATA/extras/fogbench.

The template file looks like this:

$ cat /usr/local/fledge/data/extras/fogbench/fogbench_sensor_coap.template.json
[
 { "name" : "fogbench_luxometer",
 "sensor_values" : [{ "name": "lux", "type": "number", "min": 0, "max": 130000, "precision":3 }] },
 { "name" : "fogbench_pressure",
 "sensor_values" : [{ "name": "pressure", "type": "number", "min": 800.0, "max": 1100.0, "precision":1 }] },
 { "name" : "fogbench_humidity",
 "sensor_values" : [{ "name": "humidity", "type": "number", "min": 0.0, "max": 100.0 },
 { "name": "temperature", "type": "number", "min": 0.0, "max": 50.0 }] },
 { "name" : "fogbench_temperature",
 "sensor_values" : [{ "name": "object", "type": "number", "min": 0.0, "max": 50.0 },
 { "name": "ambient", "type": "number", "min": 0.0, "max": 50.0 }] },
 { "name" : "fogbench_accelerometer",
 "sensor_values" : [{ "name": "x", "type": "number", "min": -2.0, "max": 2.0 },
 { "name": "y", "type": "number", "min": -2.0, "max": 2.0 },
 { "name": "z", "type": "number", "min": -2.0, "max": 2.0 }] },
 { "name" : "fogbench_gyroscope",
 "sensor_values" : [{ "name": "x", "type": "number", "min": -255.0, "max": 255.0 },
 { "name": "y", "type": "number", "min": -255.0, "max": 255.0 },
 { "name": "z", "type": "number", "min": -255.0, "max": 255.0 }] },
 { "name" : "fogbench_magnetometer",
 "sensor_values" : [{ "name": "x", "type": "number", "min": -255.0, "max": 255.0 },
 { "name": "y", "type": "number", "min": -255.0, "max": 255.0 },
 { "name": "z", "type": "number", "min": -255.0, "max": 255.0 }] },
 { "name" : "fogbench_mouse",
 "sensor_values" : [{ "name": "button", "type": "enum", "list": ["up", "down"] }] },
 { "name" : "fogbench_switch",
 "sensor_values" : [{ "name": "button", "type": "enum", "list": ["up", "down"] }] },
 { "name" : "fogbench_wall clock",
 "sensor_values" : [{ "name": "tick", "type": "enum", "list": ["tock"] }] }
]
$

In the array, each element simulates a message from a sensor, with a name, a set of data points that have their name, value type and range.

Data Coming from South

Now you should have all the information necessary to test the CoAP South microservice. From the command line, type:

	$FLEDGE_ROOT/scripts/extras/fogbench -t $FLEDGE_ROOT/data/extras/fogbench/fogbench_sensor_coap.template.json, if you are in a development environment, with the FLEDGE_ROOT environment variable set with the path to your project repository folder

	$FLEDGE_ROOT/bin/fogbench -t $FLEDGE_DATA/extras/fogbench/fogbench_sensor_coap.template.json, if you are in a deployed environment, with FLEDGE_ROOT and FLEDGE_DATA set correctly.
- If you have installed Fledge in the default location (i.e. /usr/local/fledge), type cd /usr/local/fledge;bin/fogbench -t data/extras/fogbench/fogbench_sensor_coap.template.json.

	fledge.fogbench -t /snap/fledge/current/usr/local/fledge/data/extras/fogbench/fogbench_sensor_coap.template.json, if you have installed a snap version of Fledge.

In development environment the output of your command should be:

$ $FLEDGE_ROOT/scripts/extras/fogbench -t data/extras/fogbench/fogbench_sensor_coap.template.json
>>> Make sure south CoAP plugin service is running & listening on specified host and port
Total Statistics:

Start Time: 2017-12-17 07:17:50.615433
Ene Time: 2017-12-17 07:17:50.650620

Total Messages Transferred: 10
Total Bytes Transferred: 2880

Total Iterations: 1
Total Messages per Iteration: 10.0
Total Bytes per Iteration: 2880.0

Min messages/second: 284.19586779208225
Max messages/second: 284.19586779208225
Avg messages/second: 284.19586779208225

Min Bytes/second: 81848.4099241197
Max Bytes/second: 81848.4099241197
Avg Bytes/second: 81848.4099241197
$

Congratulations! You have just inserted data into Fledge from the CoAP South microservice. More specifically, the output informs you that the data inserted has been composed by 10 different messages for a total of 2,880 Bytes, for an average of 284 messages per second and 81,848 Bytes per second.

If you want to stress Fledge a bit, you may insert the same data sample several times, by using the -I or –iterations argument:

$ $FLEDGE_ROOT/scripts/extras/fogbench -t data/extras/fogbench/fogbench_sensor_coap.template.json -I 100
>>> Make sure south CoAP plugin service is running & listening on specified host and port
Total Statistics:

Start Time: 2017-12-17 07:33:40.568130
End Time: 2017-12-17 07:33:43.205626

Total Messages Transferred: 1000
Total Bytes Transferred: 288000

Total Iterations: 100
Total Messages per Iteration: 10.0
Total Bytes per Iteration: 2880.0

Min messages/second: 98.3032852957946
Max messages/second: 625.860558267618
Avg messages/second: 455.15247432732866

Min Bytes/second: 28311.346165188843
Max Bytes/second: 180247.840781074
Avg Bytes/second: 131083.9126062706
$

Here we have inserted the same set of data 100 times, therefore the total number of Bytes inserted is 288,000. The performance and insertion rates varies with each iteration and fogbench presents the minimum, maximum and average values.

Checking What’s Inside Fledge

We can check if Fledge has now stored what we have inserted from the South microservice by using the asset API. From curl or Postman, use this URL:

$ curl -s http://localhost:8081/fledge/asset ; echo
[{"assetCode": "fogbench_switch", "count": 11}, {"assetCode": "fogbench_temperature", "count": 11}, {"assetCode": "fogbench_humidity", "count": 11}, {"assetCode": "fogbench_luxometer", "count": 11}, {"assetCode": "fogbench_accelerometer", "count": 11}, {"assetCode": "wall clock", "count": 11}, {"assetCode": "fogbench_magnetometer", "count": 11}, {"assetCode": "mouse", "count": 11}, {"assetCode": "fogbench_pressure", "count": 11}, {"assetCode": "fogbench_gyroscope", "count": 11}]
$

The output of the asset entry point provides a list of assets buffered in Fledge and the count of elements stored. The output is a JSON array with two elements:

	assetCode : the name of the sensor or device that provides the data

	count : the number of occurrences of the asset in the buffer

Feeding East/West Applications

Let’s suppose that we are interested in the data collected for one of the assets listed in the previous query, for example fogbench_temperature. The asset entry point can be used to retrieve the data points for individual assets by simply adding the code of the asset to the URI:

$ curl -s http://localhost:8081/fledge/asset/fogbench_temperature ; echo
[{"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41}}, {"timestamp": "2017-12-18 10:38:12.580", "reading": {"ambient": 33, "object": 7}}]
$

Let’s see the JSON output on a more readable format:

[{ "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:29.652", "reading": {"ambient": 13, "object": 41} },
 { "timestamp": "2017-12-18 10:38:12.580", "reading": {"ambient": 33, "object": 7} }]

The JSON structure depends on the sensor and the plugin used to capture the data. In this case, the values shown are:

	timestamp : the timestamp generated by the sensors. In this case, since we have inserted 10 times the same value and one time a new value using fogbench, the result is 10 timestamps with the same value and one timestamp with a different value.

	reading : a JSON structure that is the set of data points provided by the sensor. In this case:

	ambient : the ambient temperature in Celsius

	object : the object temperature in Celsius. Again, the values are repeated 10 times, due to the iteration executed by fogbench, plus an isolated element, so there are 11 readings in total. Also, it is very unlikely that in a real sensor the ambient and the object temperature differ so much, but here we are using a random number generator.

You can dig even more in the data and extract only a subset of the reading. Fog example, you can select the ambient temperature and limit to the last 5 readings:

$ curl -s http://localhost:8081/fledge/asset/fogbench_temperature/ambient?limit=5 ; echo
[{ "ambient": 13, "timestamp": "2017-12-18 10:38:29.652" },
 { "ambient": 13, "timestamp": "2017-12-18 10:38:29.652" }
 { "ambient": 13, "timestamp": "2017-12-18 10:38:29.652" },
 { "ambient": 13, "timestamp": "2017-12-18 10:38:29.652" },
 { "ambient": 13, "timestamp": "2017-12-18 10:38:29.652" }]
$

We have beautified the JSON output for you, so it is more readable.

Note

When you select a specific element in the reading, the timestamp and the element are presented in the opposite order compared to the previous example. This is a known issue that will be fixed in the next version.

Sending Greetings to the Northern Hemisphere

The next and last step is to send data to North, which means that we can take all of some of the data we buffer in Fledge and we can send it to a historian or a database using a North task or microservice.

The OMF Translator

Fledge comes with a North plugin called OMF Translator. OMF is the OSIsoft Message Format, which is the message format accepted by the PI Connector Relay OMF. The PI Connector Relay OMF is provided by OSIsoft and it is used to feed the OSIsoft PI System.

	Information regarding OSIsoft are available here

	Information regarding OMF are available here

	Information regarding the OSIsoft PI System are available here

OMF Translator is scheduled as a North task that is executed every 30 seconds (the time may vary, we set it to 30 seconds to facilitate the testing).

Preparing the PI System

In order to test the North task and plugin, first you need to setup the PI system. Here we assume you are already familiar with PI and you have a Windows server with PI installed, up and running. The minimum installation must include the PI System and the PI Connector Relay OMF. Once you have checked that everything is installed and works correctly, you should collect the IP address of the Windows system.

Setting the OMF Translator Plugin

Fledge uses the same OMF Translator plugin to send the data coming from the South modules and buffered in Fledge.

Note

In this version, only the South data can be sent to the PI System.

If you are curious to see which categories are available in Fledge, simply type:

$ curl -s http://localhost:8081/fledge/category ; echo
{
 "categories":
 [
 {
 "key": "SCHEDULER",
 "description": "Scheduler configuration",
 "displayName": "Scheduler"
 },
 {
 "key": "SMNTR",
 "description": "Service Monitor",
 "displayName": "Service Monitor"
 },
 {
 "key": "rest_api",
 "description": "Fledge Admin and User REST API",
 "displayName": "Admin API"
 },
 {
 "key": "service",
 "description": "Fledge Service",
 "displayName": "Fledge Service"
 },
 {
 "key": "Installation",
 "description": "Installation",
 "displayName": "Installation"
 },
 {
 "key": "General",
 "description": "General",
 "displayName": "General"
 },
 {
 "key": "Advanced",
 "description": "Advanced",
 "displayName": "Advanced"
 },
 {
 "key": "Utilities",
 "description": "Utilities",
 "displayName": "Utilities"
 }
]
}
$

For each plugin, you will see corresponding category e.g. For fledge-south-coap the registered category will be { "key": "COAP", "description": "CoAP Listener South Plugin"}.
The configuration for the OMF Translator used to stream the South data is initially disabled, all you can see about the settings is:

$ curl -sX GET http://localhost:8081/fledge/category/OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "4",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "readings"
 },
...}
$ curl -sX GET http://localhost:8081/fledge/category/Stats%20OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "5",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "statistics"
 },
...}
$

At this point it may be a good idea to familiarize with the jq tool, it will help you a lot in selecting and using data via the REST API. You may remember, we discussed it in the Building Fledge chapter.

First, we can see the list of all the scheduled tasks (the process of sending data to a PI Connector Relay OMF is one of them). The command is:

$ curl -s http://localhost:8081/fledge/schedule | jq
{
 "schedules": [
 {
 "id": "ef8bd42b-da9f-47c4-ade8-751ce9a504be",
 "name": "OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30.0,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": false
 },
 {
 "id": "27501b35-e0cd-4340-afc2-a4465fe877d6",
 "name": "Stats OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30.0,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
 },
 ...
]
}
$

…which means: “show me all the tasks that can be scheduled”, The output has been made more readable by jq. There are several tasks, we need to identify the one we need and extract its unique id. We can achieve that with the power of jq: first we can select the JSON object that shows the elements of the sending task:

$ curl -s http://localhost:8081/fledge/schedule | jq '.schedules[] | select(.name == "OMF to PI north")'
{
 "id": "ef8bd42b-da9f-47c4-ade8-751ce9a504be",
 "name": "OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
}
$

Let’s have a look at what we have found:

	id is the unique identifier of the schedule.

	name is a user-friendly name of the schedule.

	type is the type of schedule, in this case a schedule that is triggered at regular intervals.

	repeat specifies the interval of 30 seconds.

	time specifies when the schedule should run: since the type is INTERVAL, this element is irrelevant.

	day indicates the day of the week the schedule should run, in this case it will be constantly every 30 seconds

	exclusive indicates that only a single instance of this task should run at any time.

	processName is the name of the task to be executed.

	enabled indicates whether the schedule is currently enabled or disabled.

Now let’s identify the plugin used to send data to the PI Connector Relay OMF.

$ curl -s http://localhost:8081/fledge/category | jq '.categories[] | select (.key == "OMF to PI north")'
{
 "key": "OMF to PI north",
 "description": "Configuration of the Sending Process",
 "displayName": "OMF to PI north"
}
$

We can get the specific information adding the name of the task to the URL:

$ curl -s http://localhost:8081/fledge/category/OMF%20to%20PI%20north | jq .plugin
{
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
}
$

Now, the output returned does not say much: this is because the plugin has never been enabled, so the configuration has not been loaded yet. First, let’s enabled the schedule. From a the previous query of the schedulable tasks, we know the id is ef8bd42b-da9f-47c4-ade8-751ce9a504be:

$ curl -X PUT http://localhost:8081/fledge/schedule/ef8bd42b-da9f-47c4-ade8-751ce9a504be -d '{ "enabled" : true }'
{
 "schedule": {
 "id": "ef8bd42b-da9f-47c4-ade8-751ce9a504be",
 "name": "OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
 }
}
$

Once enabled, the plugin will be executed inside the OMF to PI north task within 30 seconds, so you have to wait up to 30 seconds to see the new, full configuration. After 30 seconds or so, you should see something like this:

$ curl -s http://localhost:8081/fledge/category/OMF%20to%20PI%20north | jq
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "4",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "PIServerEndpoint": {
 "description": "Select the endpoint among PI Web API, Connector Relay, OSIsoft Cloud Services or Edge Data Store",
 "type": "enumeration",
 "options": [
 "PI Web API",
 "Connector Relay",
 "OSIsoft Cloud Services",
 "Edge Data Store"
],
 "default": "Connector Relay",
 "order": "1",
 "displayName": "Endpoint",
 "value": "Connector Relay"
 },
 "ServerHostname": {
 "description": "Hostname of the server running the endpoint either PI Web API or Connector Relay",
 "type": "string",
 "default": "localhost",
 "order": "2",
 "displayName": "Server hostname",
 "validity": "PIServerEndpoint != \"Edge Data Store\" && PIServerEndpoint != \"OSIsoft Cloud Services\"",
 "value": "localhost"
 },
 "ServerPort": {
 "description": "Port on which the endpoint either PI Web API or Connector Relay or Edge Data Store is listening, 0 will use the default one",
 "type": "integer",
 "default": "0",
 "order": "3",
 "displayName": "Server port, 0=use the default",
 "validity": "PIServerEndpoint != \"OSIsoft Cloud Services\"",
 "value": "0"
 },
 "producerToken": {
 "description": "The producer token that represents this Fledge stream",
 "type": "string",
 "default": "omf_north_0001",
 "order": "4",
 "displayName": "Producer Token",
 "validity": "PIServerEndpoint == \"Connector Relay\"",
 "value": "omf_north_0001"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "readings"
 },
 "StaticData": {
 "description": "Static data to include in each sensor reading sent to the PI Server.",
 "type": "string",
 "default": "Location: Palo Alto, Company: Dianomic",
 "order": "6",
 "displayName": "Static Data",
 "value": "Location: Palo Alto, Company: Dianomic"
 },
 "OMFRetrySleepTime": {
 "description": "Seconds between each retry for the communication with the OMF PI Connector Relay, NOTE : the time is doubled at each attempt.",
 "type": "integer",
 "default": "1",
 "order": "7",
 "displayName": "Sleep Time Retry",
 "value": "1"
 },
 "OMFMaxRetry": {
 "description": "Max number of retries for the communication with the OMF PI Connector Relay",
 "type": "integer",
 "default": "3",
 "order": "8",
 "displayName": "Maximum Retry",
 "value": "3"
 },
 "OMFHttpTimeout": {
 "description": "Timeout in seconds for the HTTP operations with the OMF PI Connector Relay",
 "type": "integer",
 "default": "10",
 "order": "9",
 "displayName": "HTTP Timeout",
 "value": "10"
 },
 "formatInteger": {
 "description": "OMF format property to apply to the type Integer",
 "type": "string",
 "default": "int64",
 "order": "10",
 "displayName": "Integer Format",
 "value": "int64"
 },
 "formatNumber": {
 "description": "OMF format property to apply to the type Number",
 "type": "string",
 "default": "float64",
 "order": "11",
 "displayName": "Number Format",
 "value": "float64"
 },
 "compression": {
 "description": "Compress readings data before sending to PI server",
 "type": "boolean",
 "default": "true",
 "order": "12",
 "displayName": "Compression",
 "value": "false"
 },
 "DefaultAFLocation": {
 "description": "Defines the hierarchies tree in Asset Framework in which the assets will be created, each level is separated by /, PI Web API only.",
 "type": "string",
 "default": "/fledge/data_piwebapi/default",
 "order": "13",
 "displayName": "Asset Framework hierarchies tree",
 "validity": "PIServerEndpoint == \"PI Web API\"",
 "value": "/fledge/data_piwebapi/default"
 },
 "AFMap": {
 "description": "Defines a set of rules to address where assets should be placed in the AF hierarchy.",
 "type": "JSON",
 "default": "{ }",
 "order": "14",
 "displayName": "Asset Framework hierarchies rules",
 "validity": "PIServerEndpoint == \"PI Web API\"",
 "value": "{ }"
 },
 "notBlockingErrors": {
 "description": "These errors are considered not blocking in the communication with the PI Server, the sending operation will proceed with the next block of data if one of these is encountered",
 "type": "JSON",
 "default": "{ \"errors400\" : [\"Redefinition of the type with the same ID is not allowed\", \"Invalid value type for the property\", \"Property does not exist in the type definition\", \"Container is not defined\", \"Unable to find the property of the container of type\"] }",
 "order": "15",
 "readonly": "true",
 "value": "{ \"errors400\" : [\"Redefinition of the type with the same ID is not allowed\", \"Invalid value type for the property\", \"Property does not exist in the type definition\", \"Container is not defined\", \"Unable to find the property of the container of type\"] }"
 },
 "PIWebAPIAuthenticationMethod": {
 "description": "Defines the authentication method to be used with the PI Web API.",
 "type": "enumeration",
 "options": [
 "anonymous",
 "basic",
 "kerberos"
],
 "default": "anonymous",
 "order": "17",
 "displayName": "PI Web API Authentication Method",
 "validity": "PIServerEndpoint == \"PI Web API\"",
 "value": "anonymous"
 },
 "PIWebAPIUserId": {
 "description": "User id of PI Web API to be used with the basic access authentication.",
 "type": "string",
 "default": "user_id",
 "order": "18",
 "displayName": "PI Web API User Id",
 "validity": "PIServerEndpoint == \"PI Web API\" && PIWebAPIAuthenticationMethod == \"basic\"",
 "value": "user_id"
 },
 "PIWebAPIPassword": {
 "description": "Password of the user of PI Web API to be used with the basic access authentication.",
 "type": "password",
 "default": "password",
 "order": "19",
 "displayName": "PI Web API Password",
 "validity": "PIServerEndpoint == \"PI Web API\" && PIWebAPIAuthenticationMethod == \"basic\"",
 "value": "****"
 },
 "PIWebAPIKerberosKeytabFileName": {
 "description": "Keytab file name used for Kerberos authentication in PI Web API.",
 "type": "string",
 "default": "piwebapi_kerberos_https.keytab",
 "order": "20",
 "displayName": "PI Web API Kerberos keytab file",
 "validity": "PIServerEndpoint == \"PI Web API\" && PIWebAPIAuthenticationMethod == \"kerberos\"",
 "value": "piwebapi_kerberos_https.keytab"
 },
 "OCSNamespace": {
 "description": "Specifies the OCS namespace where the information are stored and it is used for the interaction with the OCS API",
 "type": "string",
 "default": "name_space",
 "order": "21",
 "displayName": "OCS Namespace",
 "validity": "PIServerEndpoint == \"OSIsoft Cloud Services\"",
 "value": "name_space"
 },
 "OCSTenantId": {
 "description": "Tenant id associated to the specific OCS account",
 "type": "string",
 "default": "ocs_tenant_id",
 "order": "22",
 "displayName": "OCS Tenant ID",
 "validity": "PIServerEndpoint == \"OSIsoft Cloud Services\"",
 "value": "ocs_tenant_id"
 },
 "OCSClientId": {
 "description": "Client id associated to the specific OCS account, it is used to authenticate the source for using the OCS API",
 "type": "string",
 "default": "ocs_client_id",
 "order": "23",
 "displayName": "OCS Client ID",
 "validity": "PIServerEndpoint == \"OSIsoft Cloud Services\"",
 "value": "ocs_client_id"
 },
 "OCSClientSecret": {
 "description": "Client secret associated to the specific OCS account, it is used to authenticate the source for using the OCS API",
 "type": "password",
 "default": "ocs_client_secret",
 "order": "24",
 "displayName": "OCS Client Secret",
 "validity": "PIServerEndpoint == \"OSIsoft Cloud Services\"",
 "value": "****"
 }
}
$

You can look at the descriptions to have a taste of what you can control with this plugin. The default configuration should be fine, with the exception of the ServerHostname, which of course should refer to the IP address of the machine and the port used by the PI Connector Relay OMF. The PI Connector Relay OMF 1.0 used the HTTP protocol with port 8118 and version 1.2, or higher, uses the HTTPS and port 5460. Assuming that the port is 5460 and the IP address is 192.168.56.101, you can set the new ServerHostname with this PUT method:

$ curl -sH'Content-Type: application/json' -X PUT -d '{ "ServerHostname": "192.168.56.101" }' http://localhost:8081/fledge/category/OMF%20to%20PI%20north | jq
"ServerHostname": {
 "description": "Hostname of the server running the endpoint either PI Web API or Connector Relay",
 "type": "string",
 "default": "localhost",
 "order": "2",
 "displayName": "Server hostname",
 "validity": "PIServerEndpoint != \"Edge Data Store\" && PIServerEndpoint != \"OSIsoft Cloud Services\"",
 "value": "192.168.56.101"
}
$

You can note that the value element is the only one that can be changed in URL (the other elements are factory settings).

Now we are ready to send data North, to the PI System.

Sending Data to the PI System

The last bit to accomplish is to start the PI Connector Relay OMF on the Windows Server. The output may look like this screenshot, where you can see the Connector Relay debug window on the left and teh PI Data Explorer on the right.

[image: win_server_waiting] [https://s3.amazonaws.com/fledge-iot/readthedocs/images/05_win_server_waiting.jpg]

Wait a few seconds …et voilà! Readings and statistics are in the PI System:

[image: pi_loaded] [https://s3.amazonaws.com/fledge-iot/readthedocs/images/05_pi_loaded.jpg]

Congratulations! You have experienced an end-to-end test of Fledge, from South with sensor data through Fledge and East/West applications and finally to North towards Historians.

 Fledge Utilities and Scripts

Fledge Utilities and Scripts

The Fledge platform comes with a set of utilities and scripts to help users, developers and administrators with their day-by-day operations. These tools are under heavy development and you may expect incompatibilities in future versions, therefore it is highly recommended to check the revision history to verify the changes in new versions.

fledge

fledge is the first utility available with the platform, it is the control center for all the admin operations on Fledge.

In the current implementation, fledge provides these features:

	start Fledge

	stop Fledge

	kill Fledge processes

	Check the status of Fledge, i.e. whether it is running, starting or not running

	reset Fledge to its factory settings

Starting Fledge

fledge start is the command to start Fledge. Since only one core microservice of Fledge can be executed in the same environment, the command checks if Fledge is already running, and if it does, it ends. The command also checks the presence of the FLEDGE_ROOT and FLEDGE_DATA environment variables. If the variables have not been set, it verifies if Fledge has been installed in the default position, which is /usr/local/fledge or a position defined by the installed package, and it will set the missing variables accordingly. It will also take care of the PYTHONPATH variable.

In more specific terms, the command executes these steps:

	Check if Fledge is already running

	Check if the storage layer is managed or unmanaged. “managed” means that the storage layer relies on a storage system (i.e. a database, a set of files or in-memory structures) that are under exclusive control of Fledge. “unmanaged” means that the storage system is generic and potentially shared with other applications.

	Check if the storage plugin and the related storage system (for example a PostgreSQL database) is available.

	Check if the metadata structure that is necessary to execute Fledge is already available in the storage layer. If the metadata is not available, it creates the data model and sets the factory settings that are necessary to start and use Fledge.

	Start the core microservice.

	Wait until the core microservice starts the Storage microservice and the initial required process that are necessary to handle other tasks and microservices.

Safe Mode

It is possible to start Fledge in safe mode by passing the flag --safe-mode to the start command. In safe mode Fledge
will not start any of the south services or schedule any tasks, such as purge or north bound tasks. Safe mode allows
Fledge to be started and configured in those situations where a previous misconfiguration has rendered it impossible to
start and interact with Fledge.

Once started in safe mode any configuration changes should be made and then Fledge should be restarted in normal mode
to test those configuration changes.

Stopping Fledge

fledge stop is the command used to stop Fledge. The command waits until all the tasks and services have been completed, then it stops the core service.

If Fledge Does Not Stop

If Fledge does not stop, i.e. if by using the process status command ps you see Fledge processes still running, you can use fledge kill to kill them.

Note

The command issues a kill -9 against the processes associated to Fledge. This is not recommended, unless Fledge cannot be stopped. The stop command. In other words, kill is your last resort before a reboot. If you must use the kill command, it means that there is a problem: please report this to the Fledge project slack channel.

Checking the Status of Fledge

fledge status is used to provide the current status of tasks and microservices on the machine. The output is something like:

$ fledge status
Fledge running.
Fledge uptime: 2034 seconds.
=== Fledge services:
fledge.services.core
fledge.services.south --port=33074 --address=127.0.0.1 --name=HTTP_SOUTH
fledge.services.south --port=33074 --address=127.0.0.1 --name=COAP
=== Fledge tasks:
$ fledge_use_from_here stop
Fledge stopped.
$ fledge_use_from_here status
Fledge not running.
$

	The first row always indicates if Fledge is running or not

	The second row provides the uptime in seconds

	The next set of rows provides information regarding the microservices running on the machine

	The last set of rows provides information regarding the tasks running on the machine

Resetting Fledge

It may occur that you want to restore Fledge to its factory settings, and this is what fledge reset does. The command also destroys all the data and all the configuration currently stored in Fledge, so you must use it at your own risk!

Fledge can be restored to its factory settings only when it is not running, hence you should stop it first.

The command forces you to insert the word YES, all in uppercase, to continue:

$ fledge reset
This script will remove all data stored in the server.
Enter YES if you want to continue: YES
$

 Fledge Tasks

Fledge Tasks

Tasks are part of the Fledge IoT platform. They are like services, but with a clear distinction:

	services are started at a certain point (usually at startup) and they are likely to continue to work until Fledge stops.

	tasks are started when required, they execute a job and then they terminate.

In simple terms, a service is meant to always listen and react to requests, while a task is triggered by an event and then when job is terminated, the tasks ends.

That said, tasks and services shared these same features:

	They are both started by the Fledge scheduler. It is likely that services are started at startup, while tasks can start at a given time or interval.

	They both use the internal API to communicate with other services.

	They both use the same pluggable architecture to separate a common logic, usually associated to the internal features of Fledge, from a more generic logic, usually closer to the type of operations that must be performed.

In this chapter we present a set of tasks that are commonly available in Fledge.

Purge

The Purge task is triggered by the scheduler to purge old data that is still stored (buffered) in Fledge. The logic applied to the task is relatively simple:

	The task is called exclusively (i.e. there cannot be more than one Purge task running at any given time) by the Fledge scheduler every hour (by default).

	Data that is older than a certain date/time is removed.

	Optionally, data is removed if the total size of the stored objects is bigger than 1GByte (default)

	Optionally, data is not removed if it has not been extracted and used by any North task or service yet.

	All purge operations are stored in the audit log.

Purge Schedule

Purge is one of the tasks launched by the Fledge scheduler. You can retrieve information about the scheduling by calling the GET method of the schedule call. The name and the process name of the task are both purge:

$ curl -sX GET http://localhost:8081/fledge/schedule
...
{ "id" : "cea17db8-6ccc-11e7-907b-a6006ad3dba0",
 "name" : "purge",
 "time" : 0,
 "enabled" : true,
 "repeat" : 3600,
 "type" : "INTERVAL",
 "exclusive" : true,
 "processName" : "purge",
 "day" : null },
...
$

As you can see from the JSON output, the task is scheduled to be executed every hour (3,600 seconds). In order to change the interval between Purge tasks, you can call the PUT method of the schedule call by passing the associated id. For example, in order to change the task to be executed any 5 minutes (i.e. 300 seconds) you should call:

$ curl -sX PUT http://localhost:8081/fledge/schedule/cea17db8-6ccc-11e7-907b-a6006ad3dba0 -d '{"repeat": 300}'
{ "schedule": { "id": "cea17db8-6ccc-11e7-907b-a6006ad3dba0",
 "name" : "purge",
 "time" : 0,
 "enabled" : true,
 "repeat" : 300,
 "type" : "INTERVAL",
 "exclusive" : true,
 "processName" : "purge",
 "day" : null }
}
$

Purge Configuration

The configuration of the Purge task is stored in the metadata structures of Fledge and it can be retrieve using the GET method of the category/PURGE_READ call. This is the command used to retrieve the configuration in JSON format:

$ curl -sX GET http://localhost:8081/fledge/category/PURGE_READ
{ "retainUnsent" : { "type": "boolean",
 "default": "False",
 "description": "Retain data that has not been sent to any historian yet.",
 "value": "False" },
 "age" : { "type": "integer",
 "default": "72",
 "description": "Age of data to be retained, all data that is older than this value will be removed,unless retained. (in Hours)",
 "value": "72" },
 "size" : { "type": "integer",
 "default": "1000000",
 "description": "Maximum size of data to be retained, the oldest data will be removed to keep below this size, unless retained. (in Kbytes)",
 "value": "1000000" } }
$

Changes can be applied using the PUT method for each parameter call. For example, in order to change the retention policy for data that has not been sent to historians yet, you can use this call:

$ curl -sX PUT http://locahost:8081/fledge/category/PURGE_READ/retainUnsent -d '{"value": "True"}'
{ "type": "boolean",
 "default": "False",
 "description": "Retain data that has not been sent to any historian yet.",
 "value": "True" }
$

The following table shows the list of parameters that can be changed in the Purge task:

	Item

	Type

	Default

	Description

	retainUnsent

	boolean

	False

	Retain data that has not been sent to “North” yet When True, data that has not yet been retrieved by any North service or task, will not be purged. When False, data is purged without checking whether it has been sent to a North destination yet or not.

	age

	integer

	72

	Age in hours of the data to be retained. Data that is older than this value, will be purged.

	size

	integer

	1000000

	Size in KBytes of data that will be retained in Fledge. Older data will be removed to keep the data stored in Fledge below this size.

 Building and using Fledge on Raspbian

Building and using Fledge on Raspbian

Fledge requires the use of Python 3.5.3+ in order to support the
asynchronous IO mechanisms used by Fledge. Earlier Raspberry Pi Raspbian
distributions support Python 3.4 as the latest version of Python.
In order to build and run Fledge on Raspbian the version of Python
must be updated manually if your distribution has an older version.

NOTE: These steps must be executed in addition to what is described in the README file when you install Fledge on Raspbian.

Check your Python version by running the command

$ python3 --version
$

If your version is less than 3.5.3 then follow the instructions below to update
your Python version.

Install and update the build tools required for Python to be built

$ sudo apt-get update
$ sudo apt-get install build-essential tk-dev
$ sudo apt-get install libncurses5-dev libncursesw5-dev libreadline6-dev
$ sudo apt-get install libdb5.3-dev libgdbm-dev libsqlite3-dev libssl-dev
$ sudo apt-get install libbz2-dev libexpat1-dev liblzma-dev zlib1g-dev
$

Now build and install the new version of Python

$ wget https://www.python.org/ftp/python/3.5.3/Python-3.5.3.tgz
$ tar zxvf Python-3.5.3.tgz
$ cd Python-3.5.3
$./configure
$ make
$ sudo make install

Confirm the Python version

$ python3 --version
$ pip3 --version

These should both return a version number as 3.5.3+, if not then check which
python3 and pip3 you are running and replace these with the newly
built versions. This may be caused by the newly built version being
installed in /usr/local/bin and the existing python3 and pip3 being
in /usr/bin. If this is the case then remove the /usr/bin versions

$ sudo rm /usr/bin/python3 /usr/bin/pip3

You may also link to the new version if you wish

$ sudo ln -s /usr/bin/python3 /usr/local/bin/python3
$ sudo ln -s /usr/bin/pip3 /usr/local/bin/pip3

Once python3.5 has been installed you may follow the instructions
in the README file to build, install and run Fledge on Raspberry
Pi using the Raspbian distribution.

 OMF Kerberos Authentication

OMF Kerberos Authentication

Introduction

The bundled OMF north plugin in Fledge can use a number of different authentication schemes when communicating with the various OSIsoft products. The PI Web API method in the OMF [https://omf-docs.osisoft.com/] plugin supports the use of a Kerberos scheme.

The Fledge requirements.sh script installs the Kerberos client to allow the integration with what in the specific terminology is called KDC (the Kerberos server).

PI Server as the North endpoint

The OSI Connector Relay allows token authentication while PI Web API supports Basic and Kerberos authentication.

There could be more than one configuration to allow the Kerberos authentication,
the easiest one is the Windows server on which the PI Server is executed act as the Kerberos server also.

The Windows Active directory should be installed and properly configured for allowing the Windows server to authenticate Kerberos requests.

North plugin

The North plugin has a set of configurable options that should be changed, using either the Fledge API or the Fledge GUI,
to select the Kerberos authentication.

The North plugin supports the configurable option PIServerEndpoint for allowing to select the target among:

	Connector Relay

	PI Web API

	Edge Data Store

	OSIsoft Cloud Services

The PIWebAPIAuthenticationMethod option permits to select the desired authentication among:

	anonymous

	basic

	kerberos

The Kerberos authentication requires a keytab file, the PIWebAPIKerberosKeytabFileName option specifies the name of the file expected under the directory:

${FLEDGE_ROOT}/data/etc/kerberos

NOTE:

	A keytab is a file containing pairs of Kerberos principals and encrypted keys (which are derived from the Kerberos password). A keytab file allows to authenticate to various remote systems using Kerberos without entering a password.

the AFHierarchy1Level option allows to specific the first level of the hierarchy that will be created into the Asset Framework and will contain the information for the specific
North plugin.

Fledge server configuration

The server on which Fledge is going to be executed needs to be properly configured to allow the Kerberos authentication.

The following steps are needed:

	IP Address resolution for the KDC

	Kerberos client configuration

	Kerberos keytab file setup

IP Address resolution of the KDC

The Kerberos server name should be resolved to the corresponding IP Address, editing the /etc/hosts is one of the possible and the easiest way, sample row to add:

192.168.1.51 pi-server.dianomic.com pi-server

try the resolution of the name using the usual ping command:

$ ping -c 1 pi-server.dianomic.com

PING pi-server.dianomic.com (192.168.1.51) 56(84) bytes of data.
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=1 ttl=128 time=0.317 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=2 ttl=128 time=0.360 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=3 ttl=128 time=0.455 ms

NOTE:

	the name of the KDC should be the first in the list of aliases

Kerberos client configuration

The server on which Fledge runs act like a Kerberos client and the related configuration file should be edited for allowing the proper Kerberos server identification.
The information should be added into the /etc/krb5.conf file in the corresponding section, for example:

[libdefaults]
 default_realm = DIANOMIC.COM

[realms]
 DIANOMIC.COM = {
 kdc = pi-server.dianomic.com
 admin_server = pi-server.dianomic.com
 }

Kerberos keytab file

The keytab file should be generated on the Kerberos server and copied into the Fledge server in the directory:

${FLEDGE_DATA}/etc/kerberos

NOTE:

	if FLEDGE_DATA is not set its value should be $FLEDGE_ROOT/data.

The name of the file should match the value of the North plugin option PIWebAPIKerberosKeytabFileName, by default piwebapi_kerberos_https.keytab

$ ls -l ${FLEDGE_DATA}/etc/kerberos
-rwxrwxrwx 1 fledge fledge 91 Jul 17 09:07 piwebapi_kerberos_https.keytab
-rw-rw-r-- 1 fledge fledge 199 Aug 13 15:30 README.rst

The way the keytab file is generated depends on the type of the Kerberos server, in the case of Windows Active Directory this is an sample command:

ktpass -princ HTTPS/pi-server@DIANOMIC.COM -mapuser Administrator@DIANOMIC.COM -pass Password -crypto AES256-SHA1 -ptype KRB5_NT_PRINCIPAL -out C:\Temp\piwebapi_kerberos_https.keytab

Troubleshooting the Kerberos authentication

	check the North plugin configuration, a sample command

curl -s -S -X GET http://localhost:8081/fledge/category/North_Readings_to_PI | jq ".|{URL,"PIServerEndpoint",PIWebAPIAuthenticationMethod,PIWebAPIKerberosKeytabFileName,AFHierarchy1Level}"

	check the presence of the keytab file

$ ls -l ${FLEDGE_ROOT}/data/etc/kerberos
-rwxrwxrwx 1 fledge fledge 91 Jul 17 09:07 piwebapi_kerberos_https.keytab
-rw-rw-r-- 1 fledge fledge 199 Aug 13 15:30 README.rst

	verify the reachability of the Kerberos server (usually the PI Server) - Network reachability

$ ping pi-server.dianomic.com
PING pi-server.dianomic.com (192.168.1.51) 56(84) bytes of data.
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=1 ttl=128 time=5.07 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=2 ttl=128 time=1.92 ms

Kerberos reachability and keys retrieval

$ kinit -p HTTPS/pi-server@DIANOMIC.COM
Password for HTTPS/pi-server@DIANOMIC.COM:
$ klist
Ticket cache: FILE:/tmp/krb5cc_1001
Default principal: HTTPS/pi-server@DIANOMIC.COM

Valid starting Expires Service principal
09/27/2019 11:51:47 09/27/2019 21:51:47 krbtgt/DIANOMIC.COM@DIANOMIC.COM
 renew until 09/28/2019 11:51:46
$

 Fledge Plugins

Fledge Plugins

The following set of plugins are available for Fledge. These plugins
extend the functionality by adding new sources of data, new destinations,
processing filters that can enhance or modify the data, rules for
notification delivery and notification delivery mechanisms.

South Plugins

South plugins add new ways to get data into Fledge, a number of south
plugins are available ready built or users may add new south plugins of
their own by writing them in Python or C/C++.

Fledge South Plugins

	Name

	Description

	am2315

	Fledge south plugin for an AM2315 temperature and humidity sensor

	b100-modbus-python

	A south plugin to read data from a Dynamic Ratings B100 device over Modbus

	benchmark

	A Fledge benchmark plugin to measure the ingestion rates on particular hardware

	cc2650

	A Fledge south plugin for the Texas Instruments SensorTag CC2650

	coap

	A south plugin for Fledge that pulls data from a COAP sensor

	coral-enviro

	A south plugin for the Google Coral Environmental Sensor Board

	csv

	A Fledge south plugin in C++ for reading CSV files

	csv-async

	A Fledge asynchronous plugin for reading CSV data

	csvplayback

	Plays a CSV at some configurable speed and each column of the file will become a datapoint of an asset using pandas library.

	dht

	A Fledge south plugin in C++ that interfaces to a DHT-11 temperature and humidity sensor

	dht11

	A Fledge south plugin that interfaces a DHT-11 temperature sensor

	dnp3

	A south plugin for Fledge that implements the DNP3 protocol

	expression

	A Fledge south plugin that uses a user define expression to generate data

	FlirAX8

	A Fledge hybrid south plugin that uses fledge-south-modbus-c to get temperature data from a Flir Thermal camera

	game

	The south plugin used for the Fledge lab session game involving remote controlled cars

	http

	A Python south plugin for Fledge used to connect one Fledge instance to another

	ina219

	A Fledge south plugin for the INA219 voltage and current sensor

	J1708

	A plugin that uses the SAE J1708 protocol to load data from the ECU of heavy duty vehicles.

	J1939

	A CANBUS J1839 plugin to collect data into Fledge.

	lathesim

	A simulation plugin used as a demonstration to show how data can be collected within Fledge. This plugin simulates various properties of a lathe.

	modbus-c

	A Fledge south plugin that implements modbus-tcp and modbus-rtu

	modbustcp

	A Fledge south plugin that implements modbus-tcp in Python

	mqtt

	Fledge South MQTT Subscriber Plugin

	mqtt-sparkplug

	A Fledge south plugin that implements the Sparkplug API over MQTT

	opcua

	A Fledge south service that pulls data from an OPC-UA server

	openweathermap

	A Fledge south plugin to pull weather data from OpenWeatherMap

	person-detection

	Fledge south service plugin that detects person in the live video stream

	playback

	A Fledge south plugin to replay data stored in a CSV file

	pt100

	A Fledge south plugin for the PT100 temperature sensor

	random

	A south plugin for Fledge that generates random numbers

	randomwalk

	A Fledge south plugin that returns data that with randomly generated steps

	roxtec

	A Fledge south plugin for the Roxtec cable gland project

	rpienviro

	A Fledge south service for the Raspberry Pi EnviroPhat sensors

	s2opcua

	An OPCUA south plugin based on the Safe & Secure OPCUA library. This plugin offers similar functionality to the fledge-south-opcua plugin but also offers encryption and authentication.

	s7-python

	fledge-south-s7-python repository

	sensehat

	A Fledge south plugin for the Raspberry Pi Sensehat sensors

	sensorphone

	A Fledge south plugin the task to the iPhone SensorPhone app

	sinusoid

	A Fledge south plugin that produces a simulated sine wave

	systeminfo

	A Fledge south plugin that gathers information about the system it is running on.

	usb4704

	A Fledge south plugin the Advantech USB-4704 data acquisition module

	wind-turbine

	A Fledge south plugin for a number of sensor connected to a wind turbine demo

North Plugins

North plugins add new destinations to which data may be sent by Fledge. A
number of north plugins are available ready built or users may add new
north plugins of their own by writing them in Python or C/C++.

Fledge North Plugins

	Name

	Description

	azure

	A north plugin that sends data to Microsoft Azure IoT Core.

	gcp

	A north plugin to send data to Google Cloud Platform IoT Core

	harperdb

	A north plugin that sends data to the HarperDB SQL/NoSQL data management platform

	http

	A Python implementation of a north plugin to send data between Fledge instances using HTTP

	http-c

	A Fledge north plugin that sends data between Fledge instances using HTTP/HTTPS

	kafka

	A Fledge plugin for sending data north to Apache Kafka

	kafka-python

	A Python implementation of a north plugin that can send data to Apache Kafka

	mqtt-scripted

	A mqtt-scripted north plugin

	s7-python

	fledge-north-s7-python repository

	thingspeak

	A Fledge north plugin to send data to Matlab’s ThingSpeak cloud

	OMF

	Send data to OSIsoft PI Server, Edge Data Store or OSIsoft Cloud Services

Filter Plugins

Filter plugins add new ways in which data may be modified, enhanced
or cleaned as part of the ingress via a south service or egress to a
destination system. A number of north plugins are available ready built
or users may add new north plugins of their own by writing them in Python
or C/C++.

It is also possible, using particular filters, to supply expressions
or script snippets that can operate on the data as well. This provides a
simple way to process the data in Fledge as it is read from devices or
written to destination systems.

Fledge Filter Plugins

	Name

	Description

	asset

	A Fledge processing filter that is used to block or allow certain assets to pass onwards in the data stream

	change

	A Fledge processing filter plugin that only forwards data that changes by more than a configurable amount

	delta

	A Fledge processing filter plugin that removes duplicates from the stream of data and only forwards new values that differ from previous values by more than a given tolerance

	expression

	A Fledge processing filter plugin that applies a user define formula to the data as it passes through the filter

	fft

	A Fledge processing filter plugin that calculates a Fast Fourier Transform across sensor data

	Flir-Validity

	A Fledge processing filter used for processing temperature data from a Flir thermal camera

	log

	A Fledge filter that converts the readings data to a logarithmic scale. This is the example filter used in the plugin developers guide.

	metadata

	A Fledge processing filter plugin that adds metadata to the readings in the data stream

	omfhint

	A filter plugin that allows data to be added to assets that will provide extra information to the OMF north plugin.

	python27

	A Fledge processing filter that allows Python 2 code to be run on each sensor value.

	python35

	A Fledge processing filter that allows Python 3 code to be run on each sensor value.

	rate

	A Fledge processing filter plugin that sends reduced rate data until an expression triggers sending full rate data

	rename

	A Fledge processing filter that is used to modify the name of an asset, datapoint or with both

	replace

	Filter to replace characters in the names of assets and data points in readings object.

	rms

	A Fledge processing filter plugin that calculates RMS value for sensor data

	scale

	A Fledge processing filter plugin that applies an offset and scale factor to the data

	scale-set

	A Fledge processing filter plugin that applies a set of sale factors to the data

	threshold

	A Fledge processing filter that only forwards data when a threshold is crossed

Notification Rule Plugins

Notification rule plugins provide the logic that is used by the
notification service to determine if a condition has been met that should
trigger or clear that condition and hence send a notification. A number of
notification plugins are available as standard, however as with any plugin the
user is able to write new plugins in Python or C/C++ to extend the set of
notification rules.

Fledge Notification Rule Plugins

	Name

	Description

	average

	A Fledge notification rule plugin that evaluates an expression based sensor data notification rule plugin that triggers when sensors values depart from the moving average by more than a configured limit.

	delta

	A delta rule plugin

	outofbound

	A Fledge notification rule plugin that triggers when sensors values exceed limits set in the configuration of the plugin.

	simple-expression

	A Fledge notification rule plugin that evaluates an expression based sensor data

	watchdog

	Notification rule designed to be triggered if data for a given asset is not ingested for a period of time.

Notification Delivery Plugins

Notification delivery plugins provide the mechanisms to deliver the
notification messages to the systems that will receive them. A number
of notification delivery plugins are available as standard, however as
with any plugin the user is able to write new plugins in Python or C/C++
to extend the set of notification deliveries.

Fledge Notification Delivery Plugins

	Name

	Description

	alexa-notifyme

	A Fledge notification delivery plugin that sends notifications to the Amazon Alexa platform

	asset

	A Fledge notification delivery plugin that creates an asset in Fledge when a notification occurs

	blynk

	A Fledge notification delivery plugin that sends notifications to the Blynk service

	control

	A control notify plugin

	customasset

	A Fledge notification delivery plugin that creates an event asset in readings.

	email

	A Fledge notification delivery plugin that sends notifications via email

	google-hangouts

	A Fledge notification delivery plugin that sends alerts on the Google hangout platform

	ifttt

	A Fledge notification delivery plugin that triggers an action of IFTTT

	mqtt

	A notification delivery plugin that sends messages via MQTT when a notification is triggered or cleared. This is the example used in the notification delivery plugin writers guide.

	operation

	A notification delivery plugin that will cause an operation to be trigger via the set point control operation API of a south service.

	python35

	A Fledge notification delivery plugin that runs an arbitrary Python 3 script

	setpoint

	A fledge notification plugin that invokes a set point operation on a south service.

	slack

	A Fledge notification delivery plugin that sends notifications via the slack instant messaging platform

	telegram

	A Fledge notification delivery plugin that sends notifications via the telegram service

 Version History

Version History

Fledge v2

v2.0.0

Release Date: 2022-09-09

	Fledge Core

	New Features:

	Add options for choosing the Fledge Asset name: Browser Name, Subscription Path and Full Path. Use the OPC UA Source timestamp as the User Timestamp in Fledge.

	The storage interface used to query generic configuration tables has been improved to support tests for null and non-null column values.

	The ability for north services to support control inputs coming from systems north of Fledge has been introduced.

	The handling of a failed storage service has been improved. The client now attempt to re-connect and if that fails they will down. The logging produced is now much less verbose, removing the repeated messages previously seen.

	A new service has been added to Fledge to facilitate the routing of control messages within Fledge. This service is responsible for determining which south services to send control requests to and also for the security aspects of those requests.

	Ensure that new Fledge data types not supported by OMF are not processed.

	The storage service now supports a richer set of queries against the generic table interface. In particular, joins between tables are now supported.

	OPC UA Security has been enhanced. This plugin now supports Security Policies Basic256 and Basic256Sha256, with Security Modes Sign and Sign & Encrypt. Authentication types are anonymous and username/password.

	South services that have a slow poll rate can take a long time to shutdown, this sometimes resulted in those services not shutting down cleanly. The shutdown process has been modified such that these services now shutdown promptly regardless of polling rate.

	A new configuration item type has been added for the selection of access control lists.

	Support has been added to the Python query builder for NULL and NOT NULL columns.

	The Python query builder has been updated to support nested database queries.

	The third party packages on which Fledge is built have been updated to use the latest versions to resolve issues with vulnerabilities in these underlying packages.

	When the data stream from a south plugin included an OMF Hint of AFLocation, performance of the OMF North plugin would degrade. In addition, process memory would grow over time. These issues have been fixed.

	The version of the PostgreSQL database used by the Postgres storage plugin has been updated to PostgreSQL 13.

	An enhancement has been added to the North service to allow the user to specify the block size to use when sending data to the plugin. This helps tune the north services and is described in the tuning guide within the documentation.

	The notification server would previously output warning messages when it was starting, these were not an indication of a problem and should have been information messages. This has now been resolved.

	The backup mechanism has been improved to include some external items in the backup and provide a more secure backup.

	The purge option that controls if unsent assets can be purged or not has been enhanced to provide options for sent to any destination or sent to all destinations as well as sent to no destinations.

	It is now possible to add control features to Python south plugins.

	Certificate based authentication is now possible between services in a single instance. This allows for secure control messages to be implemented between services.

	Performance improvements have been made such that the display of south service data when large numbers of assets are in use.

	The new micro service, control dispatcher, is now available as a package that can be installed via the package manager.

	New data types are now supported for data points within an asset and are encoded into various Python types when passed to Python plugins or scripts run within standard plugin. This includes numpy arrays for images and data buffers, 2 dimensional Python lists and others. Details of the type encoding can be found in the plugin developers guide of the online product documentation.

	The mechanism for online update of configuration has been extended to allow for more configuration to be modified without the need to restart any services.

	Support has been added for the Raspberry Pi Bullseye release.

	A problem with a file descriptor leak in Python that could cause Fledge to fail has been resolved.

	The control of logging levels has now been added to the Python code run within a service such that the advanced settings option is now honoured by the Python code.

	Enhancements have been made to the asset tracker API to retrieve the service responsive for the ingest of a given asset.

	A new API has been added to allow external viewing and managing of the data that various plugins persist.

	A new REST API entry point has been added that allows all instances of a specified asset to be purged from the buffer. A further entry point has also been added to purge all data from the reading buffer. These entry points should be used with care as they will cause data to be discarded.

	A new parameter has been added to the asset retrieval API that allows image data to be returned, images=include. By default image type datapoints will be replaced with a message, “Image removed for brevity”, in order to reduce the size of the returned payload.

	A new API has been added to the management API that allows services to request that URL’s in the public API are proxied to the service API. This is used when extending the functionality of the system with custom microservices.

	A new set of API calls have been added to the public REST API of the product to support the control dispatcher and for the creation and management of control scripts.

	A new API has been added to the public API that will return the latest reading for a given asset. This will return all data types including images.

	A new API has been added that allows asset tracking records to be marked as deprecated. This allows the flushing of relationships between assets and the services that have processed them. It is useful only in development systems and should not be used in production systems.

	A new API call has been added that allows the persisted data related to a plugin to be retrieved via the public REST API. The is intended for use by plugin writers and to allow for better tracking of data persisted between service executions.

	A new query parameter has been added to the API used to fetch log messages from the system log, nontotals. This will increase the performance of the call at the expense of not returning the total number of logs that match the search criteria.

	New API entry points have been added for the management of Python packages.

	Major performance improvements have been made to the code for retrieving log messages from the system log. This is mainly an issue on systems with very large log files.

	The storage service API has been extended to support the creation of private schemas for the use of optional micro services registered to a Fledge instance.

	Filtering by service type has now been added to the API that retrieve service information via the public REST API.

	A number of new features have been added to the user interface to aid developers creating data pipelines and plugins. These features allow for manual purging of data, deprecating the relationship between the services and the assets they have ingested and viewing the persisted data of the plugins. These are all documented in the section on developing pipelines within the online documentation.

	A new section has been added to the documentation which discusses the process and best practices for building data pipelines in Fledge.

	A glossary has been added to the documentation for the product.

	The documentation that describes the writing of asynchronous Python plugins has been updated in line with the latest code changes.

	The documentation has been updated to reflect the new tabs available in the Fledge user interface for editing the configuration of services and tasks.

	A new introduction section has been added to the Fledge documentation that describes the new features and some typical use cases of Fledge.

	A new section has been added to the Fledge Tuning guide that discusses the tuning of North services and tasks. Also scheduler tuning has been added to the tuning guide along with the tuning of the service monitor which is used to detect failures of services within Fledge.

	The Tuning Fledge section of the documentation has been updated to include information on tuning the Fledge service monitor that is used to monitor and restart Fledge services. A section has also been added that describes the tuning of north services and tasks. A new section describes the different storage plugins available, when they should be used and how to tune them.

	Added an article on Developing with Windows Subsystem for Linux (WSL2) to the Plugin Developer Guide. WSL2 allows you to run a Linux environment directly on Windows without the overhead of Windows Hyper-V. You can run Fledge and develop plugins on WSL2.

	Documentation has been added for the purge process and the new options recently added.

	Documentation has been added to the plugin developer guides that explain what needs to be done to allow the packaging mechanism to be able to package a plugin.

	Documentation has been added to the Building Pipelines section of the documentation for the new UI feature that allows Python packages to be installed via the user interface.

	Documentation has been updated to show how to build Fledge using the requirements.sh script.

	The documentation ordering has been changed to make the section order more logical.

	The plugin developers guide has been updated to include information on the various flags that are used to communicate the options implemented by a plugin.

	Updated OMF North plugin documentation to include current OSIsoft (AVEVA) product names.

	Fixed a typo in the quick start guide.

	Improved north plugin developers documentation is now available.

	Bug Fix:

	The Fledge control script has options for purge and reset that requires a confirmation before it will continue. The message that was produced if this confirmation was not given was unclear. This has now been improved.

	An issue that could cause a north service or task that had been disabled for a long period of time to fail to send data when it was re-enabled has been resolved.

	S2OPCUA Toolkit changes required an update in build procedures for the S2OPCUA South Plugin.

	Previously it has not been possible to configure the advanced configuration of a south service until it has been run at least once. This has now been resolved and it is possible to add a south service in disable mode and edit the advanced configuration.

	The diagnostics when a plugin fails to load have been improved.

	The South Plugin shutdown problem was caused by errors in the plugin startup procedure which would throw an exception for any error. The plugin startup has been fixed so errors are reported properly. The problem of plugin shutdown when adding a filter has been resolved.

	The S2OPCUA South Plugin would throw an exception for any error during startup. This would cause the core system to shut down the plugin permanently after a few retries. This has been fixed. Error messages has been recategorized to properly reflect informational, warning and error messages.

	The update process has been optimised to remove an unnecessary restart if no new version of the software are available.

	The OMF North plugin was unable to process configuration changes or shut down if the PI Web API hostname was not correct. This has been fixed.

	S2OPC South plugin builds have been updated to explicitly reference S2OPC Toolkit Version 1.2.0.

	An issue that could on rare occasions cause the SQLite plugin to silently discard readings has been resolved.

	An issue with the automatic renewal of authentication certificates has been resolved.

	Deleting a service which had a filter pipeline could cause some orphaned configuration information to be left stored. This prevented creating filters of the same name in the future. This has now been resolved.

	The error reporting has been improved when downloading backups from the system.

	An issue that could cause north plugins to occasionally fail to shutdown correctly has now been resolved.

	Some fixes are made in Package update API that allows the core package to be updated.

	The documentation has been updated to correct a statement regarding running the south side as a task.

	GUI

	New Features:

	A new Developer item has been added to the user interface to allow for the management of Python packages via the UI. This is enabled by turning on developer features in the user interface Settings page.

	A control has been added that allows the display of assets in the South screen to be collapsed or expanded. This allows for more services to be seen when services ingest multiple assets.

	A new feature has been added to the south page that allows the relationship between an asset and a service to be deprecated. This is a special feature enabled with the Developer Features option. See the documentation on building pipelines for a full description.

	A new feature has been added to the Assets and Readings page that allows for manual purging of named assets or all assets. This is a developer only feature and should not be used on production systems. The feature is enabled, along with other developer features via the Settings page.

	A new feature has been added to the South and North pages for each service that allows the user to view, import, export and delete the data persisted by a plugin. This is a developer only feature and should not be used on production systems. It is enabled via the Setting page.

	A new configuration type, Access Control List, is now supported in user interface. This allows for selection of an ACL from those already created.

	A new tabbed layout has been adopted for the editing of south and north services and tasks. Configuration, Advanced and Security tabs are supported as our tabs for developer features if enabled.

	The user interface for displaying system logs has been modified to improve the performance of log viewing.

	The User Interface has been updated to use the latest versions of a number of packages it depends upon, due to vulnerabilities reported in those packages.

	With the introduction of image data types to the readings supported by the system the user interface has been updated to add visualisation features for these images. A new feature also allows the latest reading for a given asset to be shown.

	A new feature has been added to the south and north pages that allows the user to view the logs for the service.

	The service status display now includes the Control Dispatcher service if it has been installed.

	The user interface now supports the new control dispatcher service. This includes the graphical creation and editing of control scripts and access control lists used by control features.

	An option has been added to the Asset and Readings page to show just the latest values for a given asset.

	The notification user interface now links to the relevant sections of the online documentation allowing users to navigate to the help based on the current context.

	Some timezone inconsistencies in the user interface have been resolved.

	Bug Fix:

	An issue that would cause the GUI to not always allow JSON data to be saved has been resolved.

	An issue with the auto refresh in the systems log page that made selecting the service to filter difficult has been resolved.

	The sorting of services and tasks in the South and North pages has been improved such that enabled services appear above disabled services.

	An issue the prevented gaps in the data from appearing int he groans displayed by the GUI has now been resolved.

	Entering times in the GUI could sometimes be difficult and result in unexpected results. This has now been improved to ease the entry of time values.

	Plugins

	New Features:

	A new fledge-notify-control plugin has been added that allows notifications to be delivered via the control dispatcher service. This allows the full features of the control dispatcher to be used with the edge notification path.

	A new fledge-notify-customasset notification delivery plugin that creates an event asset in readings.

	A new fledge-rule-delta notification rule plugin that triggers when a data point value changes.

	A new fledge-rule-watchdog notification rule plugin that allows notifications to be send if data stops being ingress for specified assets.

	Support has been added for proxy servers in the north HTTP-C plugin.

	The OPCUA north plugin has been updated to include the ability for systems outside of Fledge to write to the server that Fledge advertises. These write are taken as control input into the Fledge system.

	The HTTPC North plugin has been enhanced to add an optional Python script that can be used to format the payload of the data sent in the HTTP REST request.

	The SQLite storage plugins have been updated to support service extension schemas. This is a mechanism that allows services within the Fledge system to add new schemas within the storage service that are exclusive to that service.

	The Python35 filter has been updated to use the common Python interpreter. This allows for packages such as numpy to be used. The resilience and error reporting of this plugin have also been improved.

	A set of developer only features designed to aid the process of developing data pipelines and plugins has been added in this release. These features are turned on and off via a toggle setting on the Settings page.

	A new option has been added to the Python35 filter that changes the way datapoint names are used in the JSON readings. Previously there had to be encoded and decode by use of the b’xxx’ mechanism. There is now a toggle that allows for either this to be required or simple text string use to be enabled.

	The API of the storage service has been updated to allow for custom schemas to be created by services that extend the core functionality of the system.

	New image type datapoints can now be sent between instances using the http north and south plugins.

	The ability to define response headers in the http south plugin has been added to aid certain circumstances where CORS provided data flows.

	The documentation of the Python35 filter has been updated to include a fuller description of how to make use of the configuration data block supported by the plugin.

	The documentation describing how to run services under the debugger has been improved along with other improvements to the documentation aimed at plugin developers.

	Documentation has been added for fledge-north-azure plugin.

	Documentation has now been added for fledge-north-harperdb plugin.

	Bug Fix:

	Build procedures were updated to accommodate breaking changes in the S2OPC OPCUA Toolkit.

	Occasionally switching from the sqlite to the sqlitememory plugin for the storage of readings would cause a fatal error in the storage layer. This has now been fixed and it is possible to change to sqlitememory without an error.

	A race condition within the modbus south plugin that could cause unfair scheduling of read versus write operations has been resolved. This could cause write operations to be delayed in some circumstances. The scheduling of set point write operations is now fairly interleaved between the read operations in all cases.

	A problem that caused the HTTPC North plugin to fail if the path component of the URL was omitted has been resolved.

	The modbus-c south plugin documentation has been enhanced to include details of the function codes used to read modbus data. Also incorrect error message and others have been improved to aid resolving configuration issues. The documentation has been updated to include descriptive text for the error messages that may occur.

	The Python35 filter plugin has been updated such that if no data is to be passed onwards it may now simply return the None Python constant or an empty list. Also it allows simple Python scripts to be added into filter pipelines has had a number of updates to improve the robustness of the plugin in the event of incorrect script code being provided by the user. The behaviour of the plugin has also been updated such that any errors run the script will prevent data being passed onwards the filter pipeline. An error explaining the exact cause of the failure is now logged in the system log. Also its documentation has been updated to discuss Python package imports and issues when removing previously used imports.

	The Average rule has been updated to improve the user interaction during the configuration of the rule.

	The first time a plugin that persisted data is executed erroneous errors and warnings would be written to the system log. This has now been resolved.

	An issue with the Kafka north plugin not sending data in certain circumstances has been resolved.

	Adding some notification plugins would cause incorrect errors to be logged to the system log. The functioning of the notifications was not affected. This has now been resolved and the error logs no longer appear.

	The documentation for the fledge-rule-delta plugin has been corrected.

Fledge v1

v1.9.2

Release Date: 2021-09-29

	Fledge Core

	New Features:

	The ability for south plugins to persist data between executions of south services has been added for plugins written in C/C++. This follows the same model as already available for north plugins.

	Notification delivery plugins now also receive the data that caused the rule to trigger. This can be used to deliver values in the notification delivery plugins.

	A new option has been added to the sqlite storage plugin only that allows assets to be excluded from consideration in the purge process.

	A new purge process has been added to control the growth of statistics history and audit trails. This new process is known as the “System Purge” process.

	The support bundle has been updated to include details of the packages installed.

	The package repository API endpoint has been updated to support Ubuntu 20.04 repository end point.

	The handling of updates from RPM package repositories has been improved.

	The certificate store has been updated to support more formats of certificates, including DER, P12 and PFX format certificates.

	The documentation has been updated to include an improved & detailed introduction to filters.

	The OMF north plugin documentation has been re-organised and updated to include the latest features that have been introduced to this plugin.

	A new section has been added to the documentation that discusses the tuning of the edge based control path.

	
	Bug Fix:
	
	A rare race condition during ingestion of readings would cause the south service to terminate and restart. This has now been resolved.

	In some circumstances it was seen that north services could send the same data more than once. This has now been corrected.

	An issue that caused an intermittent error in the tracking of data sent north has been resolved. This only impacted north services and not north tasks.

	An optimisation has been added to prevent north plugins being sent empty data sets when the filter chain removes all the data in a reading set.

	An issue that prevented a north service restarting correctly when certain combinations of filters were present has been resolved.

	The API for retrieving the list of backups on the system has been improved to honour the limit and offset parameters.

	An issue with the restore operation always restoring the latest backup rather than the chosen backup has been resolved.

	The support package failed to include log data if binary data had been written to syslog. This has now been resolved.

	The configuration category for the system purge was in the incorrect location with the configuration category tree, this has now been correctly placed underneath the “Utilities” item.

	It was not possible to set a notification to always retrigger as there was a limitation that there must always be 1 second between notification triggers. This restriction has now been removed and it is possible to set a retrigger time of zero.

	An error in the documentation for the plugin developers guide which incorrectly documented how to build debug binaries has been corrected.

	GUI

	New Features:

	The user interface has been updated to improve the filtering of logs when a large number of services have been defined within the instance.

	The user interface input validation for hostnames and port has been improved in the setup screen. A message is now displayed when an incorrect port or address is entered.

	The user interface now prompts to accept a self signed certificate if one is configured.

	Bug Fix:

	If a south or north plugin included a script type configuration item the GUI failed to allow the service or task using this plugin to be created correctly. This has now been resolved.

	The ability to paste into password fields has been enabled in order to allow copy/paste of keys, tokens etc into configuration of the south and north services.

	An issue that could result in filters not being correctly removed from a pipeline of 2 or more filters has been resolved.

	Plugins

	New Features:

	A new OPC/UA south plugin has been created based on the Safe and Secure OPC/UA library. This plugin supports authentication and encryption mechanisms.

	Control features have now been added to the modbus south plugin that allows the writing of registers and coils via the south service control channel.

	The modbus south control flow has been updated to use both 0x06 and 0x10 function codes. This allows items that are split across multiple modbus registers to be written in a single write operation.

	The OMF plugin has been updated to support more complex scenarios for the placement of assets with the PI Asset Framework.

	The OMF north plugin hinting mechanism has been extended to support asset framework hierarchy hints.

	The OMF north plugin now defaults to using a concise naming scheme for tags in the PI server.

	The Kafka north plugin has been updated to allow timestamps of higher granularity than 1 second, previously timestamps would be truncated to the previous second.

	The Kafka north plugin has been enhanced to give the option of sending JSON objects as strings to Kafka, as previously the default, or sending them as JSON objects.

	The HTTP-C north plugin has been updated to allow the inclusion of customer HTTP headers.

	The Python35 Filter plugin did not correctly handle string type data points. This has now been resolved.

	The OMF Hint filter documentation has been updated to describe the use of regular expressions when defining the asset name to which the hint should be applied.

	Bug Fix:

	An issue with string data that had quote characters embedded within the reading data has been resolved. This would cause data to be discarded with a bad formatting message in the log.

	An issue that could result in the configuration for the incorrect plugin being displayed has now been resolved.

	An issue with the modbus south plugin that could cause resource starvation in the threads used for set point write operations has been resolved.

	A race condition in the modbus south that could cause an issue if the plugin configuration is changed during a set point operation.

	The CSV playback south plugin installation on CentOS 7 platforms has now been corrected.

	The error handling of the OMF north plugin has been improved such that assets that contain data types that are not supported by the OMF endpoint of the PI Server are removed and other data continues to be sent to the PI Server.

	The Kafka north plugin was not always able to reconnect if the Kafka service was not available when it was first started. This issue has now been resolved.

	The Kafka north plugin would on occasion duplicate data if a connection failed and was later reconnected. This has been resolved.

	A number of fixes have been made to the Kafka north plugin, these include; fixing issues caused by quoted data in the Kafka payload, sending timestamps accurate to the millisecond, fixing an issue that caused data duplication and switching the the user timestamp.

	A problem with the quoting of string type data points on the North HTTP-C plugin has been fixed.

	String type variables in the OPC/UA north plugin were incorrectly having extra quotes added to them. This has now been resolved.

	The delta filter previously did not manage calculating delta values when a datapoint changed from being an integer to a floating point value or vice versa. This has now been resolved and delta values are correctly calculated when these changes occur.

	The example path shown in the DHT11 plugin in the developers guide was incorrect, this has now been fixed.

v1.9.1

Release Date: 2021-05-27

	Fledge Core

	New Features:

	Support has been added for Ubuntu 20.04 LTS.

	The core components have been ported to build and run on CentOS 8

	A new option has been added to the command line tool that controls the system. This option, called purge, allows all readings related data to be purged from the system whilst retaining the configuration. This allows a system to be tested and then reset without losing the configuration.

	A new service interface has been added to the south service that allows set point control and operations to be performed via the south interface. This is the first phase of the set point control feature in the product.

	The documentation has been improved to include the new control functionality in the south plugin developers guide.

	An improvement has been made to the documentation layout for default plugins to make the GUI able to find the plugin documentation.

	Documentation describing the installation of PostgreSQL on CentOS has been updated.

	The documentation has been updated to give more detail around the topic of self-signed certificates.

	Bug Fix:

	A security flaw that allowed non-privileged users to update the certificate store has been resolved.

	A bug that prevented users being created with certificate based authentication rather than password based authentication has been fixed.

	Switching storage plugins from SQLite to PostgreSQL caused errors in some circumstances. This has now been resolved.

	The HTTP code returned by the ping command has been updated to correctly report 401 errors if the option to allow ping without authentication is turned off.

	The HTTP error code returned when the notification service is not available has been corrected.

	Disabling and re-enabling the backup and restore task schedules sometimes caused a restart of the system. This has now been resolved.

	The error message returned when schedules could not be enabled or disabled has been improved.

	A problem related to readings with nested data not correctly getting copied has been resolved.

	An issue that caused problems if a service was deleted and then a new service was recreated using the name of the previously deleted service has been resolved.

	GUI

	New Features:

	Links to the online help have been added on a number of screens in the user interface.

	Improvements have been made to the user management screens of the GUI.

	Plugins

	New Features:

	North services now support Python as well as C++ plugins.

	A new delivery notification plugin has been added that uses the set point control mechanism to invoke an action in the south plugin.

	A new notification delivery mechanism has been implemented that uses the set point control mechanism to assert control on a south service. The plugin allows you to set the values of one or more control items on the notification triggered and set a different set of values when the notification rule clears.

	Support has been added in the OPC/UA north plugin for array data. This allows FFT spectrum data to be represented in the OPC/UA server.

	The documentation for the OPC/UA north plugin has been updated to recommend running the plugin as a service.

	A new storage plugin has been added that uses SQLite. This is designed for situations with low bandwidth sensors and stores all the readings within a single SQLite file.

	Support has been added to use RTSP video streams in the person detection plugin.

	The delta filter has been updated to allow an optional set of asset specific tolerances to be added in addition to the global tolerance used by the plugin when deciding to forward data.

	The Python script run by the MQTT scripted plugin now receives the topic as well as the message.

	The OMF plugin has been updated in line with recommendations from the OMF group regarding the use of SCRF Defense.

	The OMFHint plugin has been updated to support wildcarding of asset names in the rules for the plugin.

	New documentation has been added to help in troubleshooting PI connection issues.

	The pi_server and ocs north plugins are deprecated in favour of the newer and more feature rich OMF north plugin. These deprecated plugins cannot be used in north services and are only provided for backward compatibility when run as north tasks. These plugins will be removed in a future release.

	Bug Fix:

	The OMF plugin has been updated to better deal with nested data.

	Some improvements to error handling have been added to the InfluxDB north plugin for version 1.x of InfluxDB.

	The Python 35 filter stated it used the Python version 3.5 always, in reality it uses whatever Python 3 version is installed on your system. The documentation has been updated to reflect this.

	Fixed a bug that treated arrays of bytes as if they were strings in the OPC/UA south plugin.

	The HTTP North C plugin would not correctly shutdown, this effected reconfiguration when run as an always on service. This issue has now been resolved.

	An issue with the SQLite In Memory storage plugin that caused database locks under high load conditions has been resolved.

v1.9.0

Release Date: 2021-02-19

	Fledge Core

	New Features:

	Support has been added in the Python north sending process for nested JSON reading payloads.

	A new section has been added to the documentation to document the process of writing a notification delivery plugin. As part of this documentation a new delivery plugin has also been written which delivers notifications via an MQTT broker.

	The plugin developers guide has been updated with information regarding installation and debugging of new plugins.

	The developer documentation has been updated to include details for writing both C++ and Python filter plugins.

	An always on north service has been added. This compliments the current north task and allows a choice of using scheduled windows to send data north or sending data as soon as it is available.

	The Python north sending process required the JQ filter information to be mandatory in north plugins. JQ filtering has been deprecated and will be removed in the next major release.

	Storage plugins may now have configuration options that are controllable via the API and the graphical interface.

	The ping API call has been enhanced to return the version of the core component of the system.

	The SQLite storage plugin has been enhanced to distribute readings for multiple assets across multiple databases. This improves the ingest performance and also improves the responsiveness of the system when very large numbers of readings are buffered within the instance.

	Documentation has been added for configuration of the storage service.

	Bug Fix:

	The REST API for the notification service was missing the re-trigger time information for configured notification in the retrieval and update calls. This has now been added.

	If the SQLite storage plugin is configured to use managed storage Fledge fails to restart. This has been resolved, the SQLite storage service no longer uses the managed option and will ignore it if set.

	An upgraded version of the HTTPS library has been applied, this solves an issue with large payloads in HTTPS exchanges.

	A number of Python source files contained incorrect references to the readthedocs page. This has now been resolved.

	The retrieval of log information was incorrectly including debug log output if the requested level was information and higher. This is now correctly filtered out.

	If a south plugin generates bad data that can not be inserted into the storage layer, that plugin will buffer the bad data forever and continually attempt to insert it. This causes the queue to build on the south plugin and eventually will exhaust system memory. To prevent this if data can not be inserted for a number of attempts it will be discarded in the south service. This allows the bad data to be dropped and newer, good data to be handled correctly.

	When a statistics value becomes greater than 2,147,483,648 the storage layer would fail, this has now been fixed.

	During installation of plugins the user interface would occasionally flag the system as down due to congestion in the API layer. This has now been resolved and the correct status of the system should be reflected.

	The notification service previously logged errors if no rule/delivery notification plugins had been installed. This is no longer the case.

	An issue with JSON configuration options that contained escaped strings within the JSON caused the service with the associated configuration to fail to run. This has now been resolved.

	The Postgres storage engine limited the length of asset codes to 50 characters, this has now been increased to 255 characters.

	Notifications based on asset names that contain the character ‘.’ in the name would not receive any data. This has now been resolved.

	Known Issues:

	Known issues with Postgres storage plugins. During the final testing of the 1.9.0 release a problem has been found with switching to the PostgreSQL storage plugin via the user interface. Until this is resolved switching to PostgreSQL is only supported by manual editing the storage.json as per version 1.8.0. A patch to resolve this is likely to be released in the near future.

	GUI

	New Features:

	The user interface now shows the retrigger time for a notification.

	The user interface now supports adding a north service as well as a north task.

	A new help menu item has been added to the user interface which will cause the readthedocs documentation to be displayed. Also the wizard to add the south and north services has been enhanced to give an option to display the help for the plugins.

	Bug Fix:

	The user interface now supports the ability to filter on all severity levels when viewing the system log.

	Plugins

	New Features:

	The OPC/UA south plugin has been updated to allow the definition of the minimum reporting time between updates. It has also been updated to support subscription to arrays and DATE_TIME type with the OPC/UA server.

	AWS SiteWise requires the SourceTimestamp to be non-null when reading from an OPC/UA server. This was not always the case with the OPC/UA north plugin and caused issues when ingesting data into SiteWise. This has now been corrected such that SourceTimestamp is correctly set in addition to server timestamp.

	The HTTP-C north plugin has been updated to support primary and secondary destinations. It will automatically failover to the secondary if the primary becomes unavailable. Fail back will occur either when the secondary becomes unavailable or the plugin is restarted.

	Bug Fix:

	An issue with different versions of the libmodbus library prevented the modbus-c plugin building on Moxa gateways, this has now been resolved.

	An issue with building the MQTT notification plugin on CentOS/RedHat platforms has been resolved. This plugin now builds correctly on those platforms.

	The modbus plugin has been enhanced to support Modbus over IPv6, also request timeout has been added as a configuration option. There have been improvements to the error handling also.

	The DNP3 south plugin incorrectly treated all data as strings, this meant it was not easy to process the data with generic plugins. This has now been resolved and data is treated as floating point or integer values.

	The OMF north plugin previously reported the incorrect version information. This has now been resolved.

	A memory issue with the python35 filter integration has been resolved.

	Packaging conflicts between plugins that used the same additional libraries have been resolved to allow both plugins to be installed on the same machine. This issue impacted the plugins that used MQTT as a transport layer.

	The OPC/UA north plugin did not correctly handle the types for integer data, this has now been resolved.

	The OPCUA south plugin did not allow subscriptions to integer node ids. This has now been added.

	A problem with reading multiple modbus input registers into a single value has been resolved in the ModbusC plugin.

	OPC/UA north nested objects did not always generate unique node IDs in the OPC/UA server. This has now been resolved.

v1.8.2

Release Date: 2020-11-03

	Fledge Core

	Bug Fix:

	Following the release of a new version of a Python package the 1.8.1 release was no longer installable. This issue is resolved by the 1.8.2 patch release of the core package. All plugins from the 1.8.1 release will continue to work with the 1.8.2 release.

v1.8.1

Release Date: 2020-07-08

	Fledge Core

	New Features:

	Support has been added for the deployment on Moxa gateways running a variant of Debian 9 Stretch.

	The purge process has been improved to also purge the statistics history and audit trail of the system. New configuration parameters have been added to manage the amount of data to be retain for each of these.

	An issue with installing on the Mendel Day release on Google’s Coral boards has been resolved.

	The REST API has been expanded to allow an API call to be made to set the repository from which new packages will be pulled when installing plugins via the API and GUI.

	A problem with the service discovery failing to respond correctly after it had been running for a short while has been rectified. This allows external micro services to now correctly discover the core micro service.

	Details for making contributions to the Fledge project have been added to the source repository.

	The support bundle has been improved to include more information needed to diagnose issues with sending data to PI Servers

	The REST API has been extended to add a new call that will return statistics in terms of rates rather than absolute values.

	The documentation has been updated to include guidance on setting up package repositories for installing the software and plugins.

	Bug Fix:

	If JSON type configuration parameters were marked as mandatory there was an issue that prevented the update of the parameters. This has now been resolved.

	After changing storage engine from sqlite to Postgres using the configuration option in the GUI or via the API, the new storage engine would incorrectly report itself as sqlite in the API and user interface. This has now been resolved.

	External micro-services that restarted without a graceful shutdown would fail to register with the service registry as nothing was able to unregister the failed service. This has now been relaxed to allow the recovered service to be correctly registered.

	The configuration of the storage system was previously not available via the GUI. This has now been resolved and the configuration can be viewed in the Advanced category of the configuration user interface. Any changes made to the storage configuration will only take effect on the next restart of Fledge. This allows administrators to change the storage plugins used without the need to edit the storage.json configuration file.

	GUI

	Bug Fix:

	An improvement to the user experience for editing password in the GUI has been implemented that stops the issue with passwords disappearing if the input field is clicked.

	Password validation was not correctly occurring in the GUI wizard that adds south plugins. This has now be rectified.

	Plugins

	New Features:

	The Modbus plugin did not gracefully handle interrupted reads of data from modes TCP devices during the bulk transfer of data. This would result in assets missing certain data points and subsequent issues in the north systems that received those assets getting changes in the asset data type. This was a particular issue when dealign with the PI Web API and would result in excessive types being created. The Modbus plugin now detects the issues and takes action to ensure complete assets are read.

	A new image processing plugin, south human detector, that uses the Google Tensor Flow machine learning platform has been added to the Fledge-iot project.

	A new Python plugin has been added that can send data north to a Kafka system.

	A new south plugin has been added for the Dynamic Ratings B100 Electronic Temperature Monitor used for monitoring the condition of electricity transformers.

	A new plugin has been contributed to the project by Nexcom that implements the SAE J1708 protocol for accessing the ECU’s of heavy duty vehicles.

	An issue with missing dependencies on the Coral Mendel platform prevent 1.8.0 packages installing correctly without manual intervention. This has now been resolved.

	The image recognition plugin, south-human-detector, has been updated to work with the Google Coral board running the Mendel Day release of Linux.

	Bug Fix:

	A missing dependency in v1.8.0 release for the package fledge-south-human-detector meant that it could not be installed without manual intervention. This has now been resolved.

	Support has been added to the south-human-detector plugin for the Coral Camera module in addition to the existing support for USB connected cameras.

	An issue with installation of the external shared libraries required by the USB4704 plugin has been resolved.

v1.8.0

Release Date: 2020-05-08

	Fledge Core

	New Features:

	Documentation has been added for the use of the SQLite In Memory storage plugin.

	The support bundle functionality has been improved to include more detail in order to aid tracking down issues in installations.

	Improvements have been made to the documentation of the OMF plugin in line with the enhancements to the code. This includes the documentation of OCS and EDS support as well as PI Web API.

	An issue with forwarding data between two Fledge instances in different time zones has been resolved.

	A new API entry point has been added to the Fledge REST API to allow the removal of plugin packages.

	The notification service has been updated to allow for the delivery of multiple notifications in parallel.

	Improvements have been made to the handling of asset codes within the buffer in order to improve the ingest performance of Fledge. This is transparent to all services outside of the storage service and has no impact on the public APIs.

	Extra information has been added to the notification trigger such that trigger time and the asset that triggered the notification is included.

	A new configuration item type of “northTask” has been introduced. It allows the user to enter the name of a northTask in the configuration of another category within Fledge.

	Data on multiple assets may now be requested in a single call to the asset growing API within Fledge.

	An additional API has been added to the asset browser to allow time bucketed data to be returned for multiple data points of multiple assets in a single call.

	Support has been added for nested readings within the reading data.

	Messages about exceeding the configured latency of the south service may be repeated when the latency is above the configured value for a period of time. These have now been replaced with a single message when the latency is exceeded and another when the condition is cleared.

	The feedback provided to the user when a configuration item is set to an invalid value has been improved.

	Configuration items can now be marked as mandatory, this improves the user experience when configuring plugins.

	A new configuration item type, code, has been added to improve the user experience when adding code snippets in configuration data.

	Improvements have been made to the caching of configuration data within the core of Fledge.

	The logging of package installation has been improved.

	Additions have been added to the public API to allow multiple audit log sources to be extracted in a single API call.

	The audit trail has been improved to show all package additions and updates in the audit trail.

	A new API has been added to allow notification plugin packages to be updated.

	A new API has been added to allow filter code versions to be updated.

	A new API call has been added to allow retrieval of reading data over a period of time which is averaged into time buckets within that time period.

	The notification service now supports rule plugins implemented in Python as well as C++.

	Improvements have been made to the checking of configuration items such that minimum, maximum values and string lengths are now checked.

	The plugin developers documentation has been updated to include a description building C/C++ south plugins.

	Bug Fix:

	Improvements have been made to the generation of the support bundle.

	An issue in the reporting of the task names in the fledge status script has been resolved.

	The purge by size (number of readings) would remove all data if the number of rows to retain was less than 1000, this has now been resolved.

	On occasions plugins would disappear from the list of available plugins, this has now been resolved.

	Improvements have been made to the management of the certificate store to ensure the correct files are uploaded to the store.

	An expensive and unnecessary test was being performed in the asset browsing API of Fledge. This slowed down the user interface and put load n the server. This has now been removed and has improved the performance of examining the buffered data within the Fledge instance.

	The FogBench utility used to send data to Fledge has been updated in line with new Python packages for the CoAP protocol.

	Configuration category relationships were not always correctly cleaned up when a filter is deleted, this has now been resolved.

	The support bundle functionality has been updated to provide information on the Python processes.

	The REST API incorrectly allowed configuration categories with a blank name to be created. This has now been prevented.

	Validation of minimum and maximum configuration item values was not correctly performed in the REST API, this has now been resolved.

	Nested objects within readings could cause the storage engine to fail and those readings to not be stored. This has now been resolved.

	On occasion shutting down a service may fail if the filters for that service have not been activated, this has now been resolved.

	An issue that cause notifications for asset whose names contain special characters has been resolved.

	The asset tracker was not correctly adding entries to the asset tracker, this has now been resolved.

	An intermittent issue that prevented the notification service being enabled on the Buster release on Raspberry Pi has been resolved.

	An intermittent problem that would prevent the north sending process to fail has been resolved.

	Performance improvements have been made to the installation of new packages from the package repository from within the Fledge API and user interface.

	It is now possible to reuse the name of a north process after deleting one with the same name.

	The incorrect HTTP error code is returned by the asset summary API call if an asset does not exist, this has now been resolved.

	Deleting and recreating a south service may cause errors in the log to appear. These have now been resolved.

	The SQLite and SQLiteInMemory storage engines have been updated to enable a purge to be defined that reduces the number of readings to a specified value rather than simply allowing a purge by the age of the data. This is designed to allow tighter controls on the size of the buffer database when high frequency data in particular is being stored within the Fledge buffer.

	GUI

	New Features:

	The user interface for viewing logs has been improve to allow filtering by service and task. A search facility has also been added.

	The requirement that a key file is uploaded with every certificate file has been removed from the graphical user interface as this is not always true.

	The performance of adding a new notification via the graphical user interface has been improved.

	The feedback in the graphical user interface has been improved when installation of the notification service fails.

	Installing the Fledge graphical user interface on OSX platforms fails due to the new version of the brew package manager. This has now been resolved.

	Improve script editing has been added to the graphical user interface.

	Improvements have been made to the user interface for the installations and enabling of the notification service.

	The notification audit log user interface has been improved in the GUI to allow all the logs relating to notifications to be viewed in a single screen.

	The user interface has been redesigned to make better use of the screen space when editing south and north services.

	Support has been added to the graphical user interface to determine when configuration items are not valid based on the values of other items These items that are not valid in the current configuration are greyed out in the interface.

	The user interface now shows the version of the code in the settings page.

	Improvements have been made to the user interface layout to force footers to stay at the bottom of the screen.

	Bug Fix:

	Improvements have been made to the zoom and pan options within the graph displays.

	The wizard used for the creation of new notifications in the graphical user interface would loose values when going back and forth between pages, this has now been resolved.

	A memory leak that was affecting the performance of the graphical user interface has been fixed, improving performance of the interface.

	Incorrect category names may be displayed int he graphical user interface, this has now be resolved.

	Issues with the layout of the graphical user interface when viewed on an Apple iPad have been resolved.

	The asset graph in the graphical user interface would sometimes not resize to fit the screen correctly, this has now been resolved.

	The “Asset & Readings” option in the graphical user interface was initially slow to respond, this has now been improved.

	The pagination of audit logs has bene improved when multiple sources are displayed.

	The counts in the user interface for notifications have been corrected.

	Asset data graphs are not able to handle correctly the transition between one day and the next. This is now resolved.

	Plugins

	New Features:

	The existing set of OMF north plugins have been rationalised and replaced by a single OMF north plugin that is able to support the connector rely, PI Web API, EDS and OCS.

	When a Modbus TCP connection is closed by the remote end we fail to read a value, we then reconnect and move on to read the next value. On device with short timeout values, smaller than the poll interval, we fail the same reading every time and never get a value for that reading. The behaviour has been modified to allow us to retry reading the original value after re-establishing the connection.

	The OMF north plugin has been updated to support the released version of the OSIsoft EDS product as a destination for data.

	New functionality has been added to the north data to PI plugin when using PI Web API that allows the location in the PI Server AF hierarchy to be defined. A default location can be set and an override based on the asset name or metadata within the reading. The data may also be placed in multiple locations within the AF hierarchy.

	A new notification delivery plugin has been added that allows a north task to be triggered to send data for a period of time either side of the notification trigger event. This allows conditional forwarding of large amounts of data when a trigger event occurs.

	The asset notification delivery plugin has been updated to allow creation of new assets both for notifications that are triggered and/or cleared.

	The rate filter now allows the termination of sending full rate data either by use of an expression or by specifying a time in milliseconds.

	A new simple Python filter has been added that calculates an exponential moving average,

	Some typos in the OPCUA south and north plugin configuration have been fixed.

	The OPCUA north plugin has been updated to support nested reading objects correctly and also to allow a name to be set for the OPCUA server. These have also been some stability fixes in the underlying OPCUA layer used by this and the south OPCUA plugin.

	The modbus map configuration now supports byte swapping and word swapping by use of the {{swap}} property of the map. This may take the values {{bytes}}, {{words}} or {{both}}.

	The people detection machine learning plugin now supports RTSP streams as input.

	The option list items in the OMF plugin have been updated to make them more user friendly and descriptive.

	The threshold notification rule has been updated such that the unused fields in the configuration now correctly grey out in the GUI dependent upon the setting of the window type or single item asset validation.

	The configuration of the OMF north plugin for connecting to the PI Server has been improved to give the user better feedback as to what elements are valid based on choice of connection method and security options chosen.

	Support has been added for simple Python code to be entered into a filter that does not require all of the support code. This is designed to allow a user to very quickly develop filters with limited programming.

	Support has been added for filters written entirely in Python, these are full featured filters as supported by the C++ filtering mechanism and include dynamic reconfiguration.

	The fledge-filter-expression filter has been modified to better deal with streams which contain multiple assets. It is now possible to use the syntax <assetName>.<datapointName> in an expression in addition to the previous <datapointName>. The result is that if two assets in the data stream have the same data point names it is now possible to differentiate between them.

	A new plugin to collect variables from Beckhoff PLC’s has been written. The plugin uses the TwinCAT 2 or TwinCAT 3 protocols to collect specified variable from the running PLC.

	Bug Fix:

	An issue in the sending of data to the PI server with large values has been resolved.

	The playback south plugin was not correctly replaying timestamps within the file, this has now been resolved.

	Use of the asset filter in a north task could result in the north task terminating. This has now resolved.

	A small memory leak in the south service statistics handling code was impacting the performance of the south service, this is now resolved.

	An issue has been discovered in the Flir camera plugin with the validity attribute of the spot temperatures, this has now been resolved.

	It was not possible to send data for the same asset from two different Fledge’s into the PI Server using PI Web API, this has now been resolved.

	The filter Fledge RMS Trigger was not able to be dynamically reconfigured, this has now been resolved.

	If a filter in the north sending process increased the number of readings it was possible that the limit of the number of readings sent in a single block . The sending process will now ensure this can not happen.

	RMS filter plugin was not able to be dynamically reconfigured, this has now been resolved.

	The HTTP South plugin that is used to receive data from another Fledge instance may fail with some combinations of filters applied to the service. This issue has now been resolved.

	The rule filter may give errors if expressions have variables not satisfied in the reading data. Under some circumstances it has been seen that the filter fails to process data after giving this error. This has been resolved by changes to make the rate filter more robust.

	Blank values for asset names in the south service may cause the service to become unresponsive. Blank asset names have now been correctly detected, asset names are required configuration values.

	A new version of the driver software for the USB-4704 Data Acquisition Module has been released, the plugin has been updated to use this driver version.

	The OPCUA North plugin might report incorrect counts for sent readings on some platforms, this has now been resolved.

	The simple Python filter plugin was not adding correct asset tracking data, this has now been updated.

	An issue with the asset filter failing when incorrect configuration was present has bene resolved.

	The benchmark plugin now enforces a minimum number of asset of 1.

	The OPCUA plugins are now available on the Raspberry Pi Buster platform.

	Errors that prevented the use of the Postgres storage plugin have been resolved.

v1.7.0

Release Date: 2019-08-15

	Fledge Core

	New Features:

	Added support for Raspbian Buster

	Additional, optional flow control has been added to the south service to prevent it from overwhelming the storage service. This is enabled via the throttling option in the south service advanced configuration.

	The mechanism for including JSON configuration in C++ plugins has been improved and the macros for the inline coding moved to a standard location to prevent duplication.

	An option has been added that allows the system to be updated to the latest version of the system packages prior to installing a new plugin or component.

	Fledge now supports password type configuration items. This allows passwords to be hidden from the user in the user interface.

	A new feature has been added that allows the logs of plugin or other package installation to be retrieved.

	Installation logs for package installations are now retained and available via the REST API.

	A mechanism has been added that allows plugins to be marked as deprecated prior to the removal of these plugins in future releases. Running a deprecated plugin will result in a warning being logged, but otherwise the plugin will operate as normal.

	The Fledge REST API has been updated to add a new entry point that will allow a plugin to be updated from the package repository.

	An additional API has been added to fetch the set of installed services within a Fledge installation.

	An API has been added that allows the caller to retrieve the list of plugins that are available in the Fledge package repository.

	The /fledge/plugins REST API has been extended to allow plugins to be installed from an APT/RPM repository.

	Addition of support for hybrid plugins. A hybrid plugin is a JSON file that defines another plugin to load along with some default configuration for that plugin. This gives a means to create a new plugin by customising the configuration of an existing plugin. An example might be a plugin for a specific modbus device type that uses the generic modbus plugin and a predefined modbus map.

	The notification service has been improved to allow the re-trigger time of a notification to be defined by the user on a per notification basis.

	A new environment variable, FLEDGE_PLUGIN_PATH has been added to allow plugins to be stored in multiple locations or locations outside of the usual Fledge installation directory.

	Added support for FLEDGE_PLUGIN_PATH environment variable, that would be used for searching additional directory paths for plugins/filters to use with Fledge.

	Fledge packages for the Google Coral Edge TPU development board have been made available.

	Support has been added to the OMF north plugin for the PI Web API OMF endpoint. The PI Server functionality to support this is currently in beta test.

	Bug Fix/Improvements:

	An issue with the notification service becoming unresponsive on the Raspberry Pi Buster release has been resolved.

	A debug message was being incorrectly logged as an error when adding a Python south plugin. The message level has now been corrected.

	A problem whereby not all properties of configuration items are updated when a new version of a configuration category is installed has been fixed.

	The notification service was not correctly honouring the notification types for one shot, toggled and retriggered notifications. This has now be bought in line with the documentation.

	The system log was becoming flooded with messages from the plugin discovery utility. This utility now logs at the correct level and only logs errors and warning by default.

	Improvements to the REST API allow for selective sets of statistic history to be retrieved. This reduces the size of the returned result set and improves performance.

	The order in which filters are shutdown in a pipeline of filters has been reversed to resolve an issue regarding releasing Python interpreters, under some circumstances shutdowns of later filters would fail if multiple Python filters were being used.

	The output of the fledge status command was corrupt, showing random text after the number of seconds for which fledge has been up. This has now been resolved.

	GUI

	New Features:

	A new log option has been added to the GUI to show the logs of package installations.

	It is now possible to edit Python scripts directly in the GUI for plugins that load Python snippets.

	A new log retrieval option has been added to the GUI that will show only notification delivery events. This makes it easier for a user to see what notifications have been sent by the system.

	The GUI asset graphs have been improved such that multiple tabs are now available for graphing and tabular display of asset data.

	The GUI menu has been reordered to move the Notifications entry below the South and North entries.

	Support has been added to the Fledge GUI for entry of password fields. Data is obfuscated as it is entered or edited.

	The GUI now shows plugin name and version for each north task defined.

	The GUI now shows the plugin name and version for each south service that is configured.

	The GUI has been updated such that it can install new plugins from the Fledge package repository for south services and north tasks. A list of available packages from the repository is displayed to allow the user to pick from that list. The Fledge instance must have connectivity tot he package repository to allow this feature to succeed.

	The GUI now supports using certificates to authenticate with the Fledge instance.

	Bug Fix/Improvements:

	Improved editing of JSON configuration entities in the configuration editor.

	Improvements have been made to the asset browser graphs in the GUI to make better use of the available space to show the graph itself.

	The GUI was incorrectly showing Fledge as down in certain circumstances, this has now been resolved.

	An issue in the edit dialog for the north plugin which sometimes prevented the enabled state from being correctly modified has been resolved.

	Exported CSV data from the GUI would sometimes be missing column headers, these are now always present.

	The exporting of data as a CSV file in the GUI has been improved such that it no longer outputs the readings as a block of JSON, but rather individual columns. This allows the data to be imported into a spreadsheet with ease.

	Missing help text has been added for notification trigger and enabled elements.

	A number of issues in the filter configuration editor have been resolved. These issues meant that sometimes new values were not honoured or when changes were made with multiple filters in a chain only one filter would be updated.

	Under some rare circumstances the GUI asset graph may show incorrect dates, this issue has now been resolved.

	The Fledge GUI build and start commands did not work on Windows platforms and preventing the running on those platforms. This has now been resolved and the Fledge GUI can be built and run on Windows platforms.

	The GUI was not correctly interpreting the value of the readonly attribute of configuration items when the value was anything other than true. This has been resolved.

	The Fledge GUI RPM package had an error that caused installation to fail on some systems, this is now resolved.

	Plugins

	New Features:

	A new filter has been created that looks for changes in values and only sends full rate data around the time of those changes. At other times the filter can be configured to send reduced rate averages of the data.

	A new rule plugin has been implemented that will create notifications if the value of a data point moves more than a defined percentage from the average for that data point. A moving average for each data point is calculated by the plugin, this may be a simple average or an exponential moving average.

	A new south plugin has been created that supports the DNP3 protocol.

	A south plugin has been created based on the Google TensorFlow people detection model. It uses a live feed from a video camera and returns data regarding the number of people detected and the position within the frame.

	A south plugin based on the Google TensorFlow demo model for people recognition has been created. The plugin reads an image from a file and returns the people co-ordinates of the people it detects within the image.

	A new north plugin has been added that creates an OPCUA server based on the data ingested by the Fledge instance.

	Support has been added for a Flir Thermal Imaging Camera connected via Modbus TCP. Both a south plugin to gather the data and a filter plugin, to clean the data, have been added.

	A new south plugin has been created based on the Google TensorFlow demo model that accepts a live feed from a Raspberry Pi camera and classifies the images.

	A new south plugin has been created based on the Google TensorFlow demo model for object detection. The plugin return object count, name position and confidence data.

	The change filter has been made available on CentOS and RedHat 7 releases.

	Bug Fix/Improvements:

	Support for reading floating point values in a pair of 16 bit registers has been added to the modbus plugin.

	Improvements have been made to the performance of the modbus plugin when large numbers of contiguous registers are read. Also the addition of support for floating point values in modbus registers.

	Flir south service has been modified to support the Flir camera range as currently available, i.e. a maximum of 10 areas as opposed to the 20 that were previously supported. This has improved performance, especially on low performance platforms.

	The python35 filter plugin did not allow the Python code to add attributes to the data. This has now been resolved.

	The playback south plugin did not correctly take the timestamp data from he CSV file. An option is now available that will allow this.

	The rate filter has been enhanced to accept a list of assets that should be passed through the filter without having the rate of those assets altered.

	The filter plugin python35 crashed on the Buster release on the Raspberry Pi, this has now been resolved.

	The FFT filter now enforces that the number of samples must be a power of 2.

	The ThingSpeak north plugin was not updated in line with changes to the timestamp handling in Fledge, this resulted in a crash when it tried to send data to ThingSpeak. This has been resolved and the cause of the crash also fixed such that now an error will be logged rather than the task crashing.

	The configuration of the simple expression notification rule plugin has been simplified.

	The DHT 11 plugin mistakenly had a dependency on the Wiring PI package. This has now been removed.

	The system information plugin was missing a dependency that would cause it to fail to install on systems that did not already have the package it was depend on installed. This has been resolved.

	The phidget south plugin reconfiguration method would crash the service on occasions, this has now been resolved.

	The notification service would sometimes become unresponsive after calling the notify-python35 plugin, this has now been resolved.

	The configuration options regarding notification evaluation of single items and windows has been improved to make it less confusing to end users.

	The OverMax and UnderMin notification rules have been combined into a single threshold rule plugin.

	The OPCUA south plugin was incorrectly reporting itself as the upcua plugin. This is now resolved.

	The OPCUA south plugin has been updated to support subscriptions both using browse names and Node Id’s. Node ID is now the default subscription mechanism as this is much higher performance than traversing the object tree looking at browse names.

	Shutting down the OPCUA service when it has failed to connect to an OPCUA server, either because of an incorrect configuration or the OPCUA server being down resulted in the service crashing. The service now shuts down cleanly.

	In order to install the fledge-south-modbus package on RedHat Enterprise Linux or CentOS 7 you must have configured the epel repository by executing the command:

sudo yum install epel-release

	A number of packages have been renamed in order to obtain better consistency in the naming and to facilitate the upgrade of packages from the API and graphical interface to Fledge. This will result in duplication of certain plugins after upgrading to the release. This is only an issue of the plugins had been previously installed, these old plugin should be manually removed form the system to alleviate this problem.

The plugins involved are,

	fledge-north-http Vs fledge-north-http-north

	fledge-south-http Vs fledge-south-http-south

	fledge-south-Csv Vs fledge-south-csv

	fledge-south-Expression Vs fledge-south-expression

	fledge-south-dht Vs fledge-south-dht11V2

	fledge-south-modbusc Vs fledge-south-modbus

v1.6.0

Release Date: 2019-05-22

	Fledge Core

	New Features:

	The scope of the Fledge certificate store has been widen to allow it to store .pem certificates and keys for accessing cloud functions.

	The creation of a Docker container for Fledge has been added to the packaging options for Fledge in this version of Fledge.

	Red Hat Enterprise Linux packages have been made available from this release of Fledge onwards. These packages include all the applicable plugins and notification service for Fledge.

	The Fledge API now supports the creation of configuration snapshots which can be used to create configuration checkpoints and rollback configuration changes.

	The Fledge administration API has been extended to allow the installation of new plugins via API.

	Improvements/Bug Fix:

	A bug that prevents multiple Fledge’s on the same network being discoverable via multicast DNS lookup has been fixed.

	Set, unset optional configuration attributes

	GUI

	New Features:

	The Fledge Graphical User Interface now has the ability to show sets of graphs over a time period for data such as the spectrum analysis produced but the Fast Fourier transform filter.

	The Fledge Graphical User Interface is now available as an RPM file that may be installed on Red Hat Enterprise Linux or CentOS.

	Improvements/Bug Fix:

	Improvements have been made to the Fledge Graphical User Interface to allow more control of the time periods displayed in the graphs of asset values.

	Some improvements to screen layout in the Fledge Graphical User Interface have been made in order to improve the look and reduce the screen space used in some of the screens.

	Improvements have been made to the appearance of dropdown and other elements with the Fledge Graphical User Interface.

	Plugins

	
	New Features:
	
	A new threshold filter has been added that can be used to block onward transmission of data until a configured expression evaluates too true.

	The Modbus RTU/TCP south plugin is now available on CentOS 7 and RHEL 7.

	A new north plugin has been added to allow data to be sent the Google Cloud Platform IoT Core interface.

	The FFT filter now has an option to output raw frequency spectra. Note this can not be accepted into all north bound systems.

	Changed the release status of the FFT filter plugin.

	Added the ability in the modbus plugin to define multiple registers that create composite values. For example two 16 bit registers can be put together to make one 32 bit value. This is does using an array of register values in a modbus map, e.g. {“name”:”rpm”,”slave”:1,”register”:[33,34],”scale”:0.1,”offset”:0}. Register 33 contains the low 16 its of the RPM and register 34 the high 16 bits of the RPM.

	Addition of a new Notification Delivery plugin to send notifications to a Google Hangouts chatroom.

	A new plugin has been created that uses machine learning based on Google’s TensorFlow technology to classify image data and populate derived information the north side systems. The current TensorFlow model in use will recognise hard written digits and populate those digits. This plugins is currently a proof of concept for machine learning.

	
	Improvements/Bug Fix:
	
	Removal of unnecessary include directive from Modbus-C plugin.

	Improved error reporting for the modbus-c plugin and added documentation on the configuration of the plugin.

	Improved the subscription handling in the OPCUA south plugin.

	Stability improvements have been made to the notification service, these related to the handling of dynamic reconfigurations of the notifications.

	Removed erroneous default for script configuration option in Python35 notification delivery plugin.

	Corrected description of the enable configuration item.

v1.5.2

Release Date: 2019-04-08

	Fledge Core

	
	New Features:
	
	Notification service, notification rule and delivery plugins

	Addition of a new notification delivery plugin that will create an asset reading when a notification is delivered. This can then be sent to any system north of the Fledge instance via the usual mechanisms

	Bulk insert support for SQLite and Postgres storage plugins

	
	Enhancements / Bug Fix:
	
	Performance improvements for SQLite storage plugin.

	Improved performance of data browsing where large datasets have been acquired

	Optimized statistics history collection

	Optimized purge task

	The readings count shown on GUI and south page and corresponding API endpoints now shows total readings count and not what is currently buffered by Fledge. So these counts don’t reduce when purge task runs

	Static data in the OMF plugin was not being correctly taken from the plugin configuration

	Reduced the number of informational log messages being sent to the syslog

	GUI

	
	New Features:
	
	Notifications UI

	
	Bug Fix:
	
	Backup creation time format

v1.5.1

Release Date: 2019-03-12

	Fledge Core

	Bug Fix: plugin loading errors

	GUI

	Bug Fix: uptime shows up to 24 hour clock only

v1.5.0

Release Date: 2019-02-21

	Fledge Core

	Performance improvements and Bug Fixes

	Introduction of Safe Mode in case Fledge is accidentally configured to generate so much data that it is overwhelmed and can no longer be managed.

	GUI

	re-organization of screens for Health, Assets, South and North

	bug fixes

	South

	Many Performance improvements, including conversion to C++

	Modbus plugin

	many other new south plugins

	North

	Compressed data via OMF

	Kafka

	Filters: Perform data pre-processing, and allow distributed applications to be built on Fledge.

	Delta: only send data upon change

	Expression: run a complex mathematical expression across one or more data streams

	Python: run arbitrary python code to modify a data stream

	Asset: modify Asset metadata

	RMS: Generate new asset with Root Mean Squared and Peak calculations across data streams

	FFT (beta): execute a Fast Fourier Transform across a data stream. Valuable for Vibration Analysis

	Many others

	Event Notification Engine (beta)

	Run rules to detect conditions and generate events at the edge

	Default Delivery Mechanisms: email, external script

	Fully pluggable, so custom Rules and Delivery Mechanisms can be easily created

	Debian Packages for All Repo’s

v1.4.1

Release Date: 2018-10-10

v1.4.0

Release Date: 2018-09-25

v1.3.1

Release Date: 2018-07-13

Fixed Issues

	Open File Descriptors

	open file descriptors: Storage service did not close open files, leading to multiple open file descriptors

v1.3

Release Date: 2018-07-05

New Features

	Python version upgrade

	python 3 version: The minimal supported python version is now python 3.5.3.

	aiohttp python package version upgrade

	aiohttp package version: aiohttp (version 3.2.1) and aiohttp_cors (version 0.7.0) is now being used

	Removal of south plugins

	coap: coap south plugin was moved into its own repository https://github.com/fledge-iot/fledge-south-coap

	http: http south plugin was moved into its own repository https://github.com/fledge-iot/fledge-south-http

Known Issues

	Issues in Documentation

	plugin documentation: testing Fledge requires user to first install southbound plugins necessary (CoAP, http)

v1.2

Release Date: 2018-04-23

New Features

	Changes in the REST API

	ping Method: the ping method now returns uptime, number of records read/sent/purged and if Fledge requires REST API authentication.

	Storage Layer

	Default Storage Engine: The default storage engine is now SQLite. We provide a script to migrate from PostgreSQL in 1.1.1 version to 1.2. PostgreSQL is still available in the main repository and package, but it will be removed to an operate repository in future versions.

	Admin and Maintenance Scripts

	fledge status: the command now shows what the ping REST method provides.

	setenv script: a new script has been added to simplify the user interaction. The script is in $FLEDGE_ROOT/extras/scripts and it is called setenv.sh.

	fledge service script: a new service script has been added to setup Fledge as a service. The script is in $FLEDGE_ROOT/extras/scripts and it is called fledge.service.

Known Issues

	Issues in the REST API

	asset method response: the asset method returns a JSON object with asset code named asset_code instead of assetCode

	task method response: the task method returns a JSON object with unexpected element "exitCode"

v1.1.1

Release Date: 2018-01-18

New Features

	Fixed aiohttp incompatibility: This fix is for the incompatibility of aiohttp with yarl, discovered in the previous version. The issue has been fixed.

	Fixed avahi-daemon issue: Avahi daemon is a pre-requisite of Fledge, Fledge can now run as a snap or build from source without avahi daemon installed.

Known Issues

	PostgreSQL with Snap: the issue described in version 1.0 still persists, see Known Issues in v1.0.

v1.1

Release Date: 2018-01-09

New Features

	Startup Script:

	fledge start script now checks if the Core microservice has started.

	fledge start creates a core.err file in $FLEDGE_DATA and writes the stderr there.

Known Issues

	Incompatibility between aiohttp and yarl when Fledge is built from source: in this version we use aiohttp 2.3.6 (check here). This version is incompatible with updated versions of yarl (0.18.0+). If you intend to use this version, change the requirements for aiohttp for version 2.3.8 or higher.

	PostgreSQL with Snap: the issue described in version 1.0 still persists, see Known Issues in v1.0.

v1.0

Release Date: 2017-12-11

Features

	All the essential microservices are now in place: Core, Storage, South, North.

	Storage plugins available in the main repository:

	Postgres: The storage layer relies on PostgreSQL for data and metadata

	South plugins available in the main repository:

	CoAP Listener: A CoAP microservice plugin listening to client applications that send data to Fledge

	North plugins available in the main repository:

	OMF Translator: A task plugin sending data to OSIsoft PI Connector Relay 1.0

Known Issues

	Startup Script: fledge start does not check if the Core microservice has started correctly, hence it may report that “Fledge started.” when the process has died. As a workaround, check with fledge status the presence of the Fledge microservices.

	Snap Execution on Raspbian: there is an issue on Raspbian when the Fledge snap package is used. It is an issue with the snap environment, it looks for a shared object to preload on Raspian, but the object is not available. As a workaround, a superuser should comment a line in the file /etc/ld.so.preload. Add a # at the beginning of this line: /usr/lib/arm-linux-gnueabihf/libarmmem.so. Save the file and you will be able to immediately use the snap.

	OMF Translator North Plugin for Fledge Statistics: in this version the statistics collected by Fledge are not sent automatically to the PI System via the OMF Translator plugin, as it is supposed to be. The issue will be fixed in a future release.

	Snap installed in an environment with an existing version of PostgreSQL: the Fledge snap does not check if another version of PostgreSQL is available on the machine. The result may be a conflict between the tailored version of PostgreSQL installed with the snap and the version of PostgreSQL generally available on the machine. You can check if PostgreSQL is installed using the command sudo dpkg -l | grep 'postgres'. All packages should be removed with sudo dpkg --purge <package>.

 Downloads

Downloads

Packages

Packages for a number of different Linux platforms are available for both Intel and Arm architectures via the Dianomic web site’s download page.

	Downloads Page

Download/Clone from GitHub

Fledge and the Fledge tools are on GitHub. You can view and download them here:

	Fledge: This is the main project for the Fledge platform.
 https://github.com/fledge-iot/fledge

	Fledge GUI: This is an experimental GUI that connects to the Fledge REST API to configure and administer the platform and to retrieve the data buffered in it.
 https://github.com/fledge-iot/fledge-gui

There are many south, north, and filter plugins available on github:
 https://github.com/fledge-iot

 Glossary

Glossary

The following are a set of definitions for terms used within the Fledge documentation and code, these are designed to be an aid to understanding some of the principles behind Fledge and improve the comprehension of the documentation by ensuring all readers have a common understanding of the terms used. If you feel any terms are missing or not fully explained please raise an issue against, or contribute to, the documentation in the Fledge GitHub repository.

	Asset
	A representation of a set of device or set of values about a device or entity that is being monitored and possibly controlled by Fledge. It may also be used to represent a subset of a device. These values are a collection of Datapoints that are the actual values. An asset contains a unique name that is used to reference the data about the asset. An asset is an abstract concept and has no real implementation with the fledge code, instead a reading is used to represent the state of an asset at a point in term. The phase asset is used to represent a time series collection of 0 or more readings.

	Control Service
	An optional microservice that is used by the control features of Fledge to route control messages from the various sources of control and send them to the south service which implements the control path for the assets under control.

	Core Service
	The service within Fledge that is responsible for the oversight of all the other services. It provides configuration management, monitoring, registration and routing services. It is also responsible for the public API into the Fledge system and the execution of periodic tasks such as purge, statistics and backup.

	Datapoint
	A datapoint is a container for data, each datapoint represents a value that is known about an asset and has a name for that value and the value itself. Values may be one of many types; simpler scalar values, alpha numeric strings, arrays of scalar values, images, arbitrary binary objects or a collection of datapoints.

	Filter
	A combination of a Filter Plugin and the configuration that makes that filter perform the processing that is required of it.

	Filter Plugin
	A filter plugin is a plugin that implements an operation on one or more reading as it passes through the Fledge system. This processing may add, remove or augment the data as it passes through Fledge. Filters are arrange as linear pipelines in either the south service as data is ingested into Fledge or the north services and tasks as data is passed upstream to the systems that receive data from Fledge.

	Microservice
	A microservice is a small service that implements parts of the Fledge functionality. They are also referred to as services.

	Notification Delivery Plugin
	A notification delivery plugin is used by the notification service to delivery notifications when a notification rule triggers. A notification delivery plugin may send notification data to external systems, trigger internal Fledge operations or create reading data within the Fledge storage service.

	Notification Rule Plugin
	A notification rule plugin is used by the notification service to determine if a notification should be sent. The rule plugin receives reading data from the Fledge storage service, evaluates a rule against that data and returns a triggered or cleared state to the notification service.

	Notification Service
	An optional service within Fledge that is responsible for the execution and delivery of notifications when events occurs in the data that is being ingested into Fledge.

	North
	An abstract term for any service or system to which Fledge sends data that is has ingested. Fledge may also receive control message from the north as well as from other locations.

	North Plugin
	A plugin that implements to connection to an upstream system. North plugins are responsible to both implement the communication to the north systems and also the translation from internal data representations to the representation used in the external system.

	North Service
	A service responsible for connections upstream from Fledge. These are usually systems that will receive data that Fledge has ingested and/or processed. There may also be control data flows that operate from the north systems into the Fledge system.

	North Task
	A task that is run to send data to upstream systems from Fledge. It is very similar in operation and concept to a north service, but differs from a north service in that it does not always run, it is scheduled using a time based schedule and is designed for situation where connection to the upstream system is not always available or desirable.

	Pipeline
	A linear collection of zero or more filters connected between with the south plugin that ingests data and the storage service, or between the storage service and the north plugin as data exits Fledge to be sent to upstream systems.

	Plugin
	A dynamically loadable code fragment that is used to enhance the capabilities of Fledge. These plugins may implement a south interface to devices and systems, a north interface to systems that receive data from Fledge, a storage plugin used to buffer readings, a filter plugin used to process data, a notification rule or notification delivery plugin. Plugins have well defined interfaces, they can be written by third parties without recourse to modifying the Fledge services and are shipped externally to Fledge to allow for diverse installations of Fledge. Plugins are the major route by which Fledge is customized for individual use cases.

	Purge
	The process by which readings are removed from the storage service.

	Reading
	A reading is the presentation of an asset at a point in time. It contains the asset name, two timestamps and the collection of datapoints that represent the state of the asset at that point in time. A reading has two timestamps to allow for the time to be recorded when Fledge first read the data and also for the device itself to give a time that it sets for when the data was created. Not all devices are capable of reporting timestamps and hence this second timestamp may be the same as the first.

	Service
	Fledge is implemented as a set of services, each of which runs constantly and implements a subset of the system functionality. There are a small set of fixed services, such as the core service or storage service, optional services for enhanced functionality, such as the notification service and control service. There are also a set of non-fixed services of various types used to interact with downstream or south devices and upstream or north systems.

	South
	An abstract term for any device or service from which Fledge ingests data or over which Fledge exerts control.

	South Service
	A service responsible for communication with a device or service from which Fledge is ingesting data. Each south service connections to a single device and can collect data from that device and optionally send control signals to that device. A south service may represent one or more assets.

	South Plugin
	A south plugin is a plugin that implements the interface to a device or system from which Fledge is collecting data and optionally to which Fledge is sending control signals.

	Storage Service
	A microservice that implements either permanent or transient storage services used to both buffer readings within Fledge and also to store Fledge’s configuration information. The storage services uses either one or two storage plugins to store the configuration data and the readings data.

	Storage Plugin
	A plugin that implements the storage requirements of the Fledge storage service. A plugin may implement the storage of both configuration and readings or it may just implement readings storage. In this later case Fledge will use two storage plugins, one to store the configuration and the other to store the readings.

	Task
	A task implements functionality that only runs for specific times within Fledge. It is used to initiate periodic operations that are not required to be always running. Amongst the tasks that form part of Fledge are the purge task, north tasks, backup and statistics gathering tasks.

 Index

Index

 A
 | C
 | D
 | F
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	Asset

C

 	
 	Control Service

 	
 	Core Service

D

 	
 	Datapoint

F

 	
 	Filter

 	
 	Filter Plugin

M

 	
 	Microservice

N

 	
 	North

 	North Plugin

 	North Service

 	
 	North Task

 	Notification Delivery Plugin

 	Notification Rule Plugin

 	Notification Service

P

 	
 	Pipeline

 	
 	Plugin

 	Purge

R

 	
 	Reading

S

 	
 	Service

 	South

 	South Plugin

 	
 	South Service

 	Storage Plugin

 	Storage Service

T

 	
 	Task

 Access Control Lists

Access Control Lists

Control features within Fledge have the ability to add access control to every stage of the control process. Access control lists are used to limit which services have access to specific south services or scripts within the Fledge system.

Graphical Interface

A graphical interfaces is available to allow the creation and management of the access control lists used within the Fledge system. This is available within the Control Dispatcher menu item of the Fledge graphical interface.

	[image: ACL_1]

Adding An ACL

Click on the Add button in the top right corner of the ACL screen, the following screen will then be displayed.

	[image: ACL_2]

You can enter a name for your access control list in the Name item on the screen. You should give each of your ACLs a unique name, this may be anything you like, but should ideally be descriptive or memorable as this is the name you will use when associating the ACL with services and scripts.

The Services section is use to define a set of services that this ACL is allowing access for. You may select services either by name or by service type. Multiple services may be granted access by a single ACL.

	[image: ACL_3]

To add a named service to the ACL select the names drop down list and select the service name from those displayed. The display will change to show the service that you added to the ACL.

	[image: ACL_4]

More names may be added to the ACL by selecting the drop down again.

	[image: ACL_5]

If you wish to remove a named service from the list of services simply click on the small x to the left of the service name you wish to remove.

It is also possible to add a service type to an ACL. In this case all services of this type in the local Fledge instance will be given access via this ACL.

	[image: ACL_6]

For example to create an ACL that allows all north services to have be granted access you would select Northbound in the Services Types drop down list.

	[image: ACL_7]

The URLs section of the ACL is used to grant access to specific URLs accessing the system.

Note

This is intended to allow control access via the REST API of the Fledge instance and is currently not implemented in Fledge.

Once you are satisfied with the content of your access control list click on the Save button at the bottom of the page. You will be taken back to a display of the list of ACLs defined in your system.

	[image: ACL_8]

Updating an ACL

In the page that displays the set of ACLs in your system, click on the name of the ACL you wish to update, a page will then be displayed showing the current contents of the ACL.

	[image: ACL_9]

To completely remove the ACL from the system click on the Delete button at the bottom of the page.

You may add and remove service names and types using the same procedure you used when adding the ACL.

Once you are happy with your updated ACL click on the Save button.

 Graphical Interface

Graphical Interface

The automation scripts are available via the Control Service menu item in the left hand menu panel. Selecting this will give you access to the user interface associated with the control functions of Fledge. Click on the Scripts tab to select the scripts, this will display a list of scripts currently defined within the system and also show an add button icon the top right corner.

	[image: automation_1]

Viewing & Editing Existing Scripts

Simply click on the name of a script to view the script

	[image: automation_2]

The steps within the script are each displayed within a panel for that step. The user is then able to edit the script provided they have permission on the script.

There are then a number of options that allow you to modify the script, note however it is not possible to change the type of a step in the script. The user must add a new step and remove the old step they wish to replace.

	To add a new step to a script click on the Add new step button

	The new step be created in a new panel and will prompt for the user to select the step type

	[image: automation_5]

	The next step in to process will depend on the type of automation step chosen.

	A Configure step will request the configuration category to update to be chosen. This is displayed in a drop down menu.

	[image: automation_6]

The configuration categories are shown as a tree structure, allowing the user to navigate to the configuration category they wish to change.

Once chosen the user is presented with the items in that configuration category from which to choose.

	[image: automation_7]

Selecting an item will give you a text box with the current value of that item. Simply type the new value that should be assigned to that item when this step of the script runs into that text box.

	A Delay step will request the duration of the delay. The Duration is merely typed into the text box and is expressed in milliseconds.

	An Operation step will request you to enter the name of the operation to perform and then select the service to which the operation request should be sent

	[image: automation_8]

Operations can be passed zero or more parameters, to add parameters to an operation click on the Add parameter option. A pair of text boxes will appear allowing you to enter the key and value for the parameter.

	[image: automation_9]

To add another parameter simply press the Add parameter option again.

	A Script step will request you to choose the name of the script to run from a list of all the currently defined scripts.

	[image: automation_10]

Note that the script that you are currently editing is not included in this list of scripts. You can then choose if you want the execution of this script to block the execution of the current script or to run in parallel with the execution of the current script.

	[image: automation_11]

Scripts may also have parameters added by choosing the Add parameter option.

	A Write step will request you to choose the service to which you wish to send the write request. The list of available services is given in a drop down selection.

	[image: automation_12]

Values are added to the write request by clicking on the Add new value option. This will present a pair of text boxes in which the key and value of the write request value can be typed.

	[image: automation_13]

Multiple values can be sent in a single write request, to add another value simply click on the Add new value option again.

	Any step type may have a condition added to it. If a step has a condition associated with it, then that condition must evaluate to true if the step is to be run executed. If it does not evaluate to true the step is skipped and the next step is executed. To add a condition to a step click on the Add condition option within the step’s panel.

	[image: automation_14]

A key and a value text box appears, type the key to test, this is usually a script parameter and the value to test. Script parameters are referenced using the $ character to enclose the name of the script parameter.

	[image: automation_15]

A selection list is provided that allows the test that you wish to perform to be chosen.

	[image: automation_16]

	To remove a step from a script click on the bin icon on the right of the step panel

	[image: automation_4]

	To reorder the steps in a script it is a simple case of clicking on one of the panels that contains a step and dragging and dropping the step into the new position within the script in which it should run.

	[image: automation_3]

	A script may have an access control list associated to it. This controls how a script can be access, it allows the script to limit access to certain services, notifications or APIs. The creation of ACLs is covered elsewhere, to associate an ACL to a script simply select the name of the ACL from the ACL drop down at foot of the screen. If not ACL is assigned access to the script will not be limited.

Adding a Script

The process for adding new scripts is similar to editing an existing script.

	To add a new script click on the Add option in the top right corner.

	Enter a name for the script in the text box that appears

	[image: automation_17]

	Now start to add the steps to you script in the same way as above when editing an existing script.

	Once you have added all your steps you may also add optional access control list

	Finally click on Save to save your script

 OMF

OMF

The OMF north plugin is included in all distributions of the Fledge core and provides the north bound interface to the OSIsoft data historians in all it forms; PI Server, Edge Data Store and OSIsoft Cloud Services.

 Threshold Rule

Threshold Rule

The threshold rule is used to detect the value of a data point within an asset going above or below a set threshold.

The configuration of the rule allows the threshold value to be set, the operation and the datapoint used to trigger the rule.

	[image: threshold]

	Asset name: The name of the asset that is tested by the rule.

	Datapoint Name: The name of the datapoint in the asset used for the test.

	Condition: The condition that is being tested, this may be one of >, >=, <= or <.

	Trigger value: The value used for the test.

	Evaluation data: Select if the data evaluate is a single value or a window of values.

	Window evaluation: Only valid if evaluation data is set to Window. This determines if the value used in the rule evaluation is the average, minimum or maximum over the duration of the window.

	Time window: Only valid if evaluation data is set to Window. This determines the time span of the window.

 A South Plugin Example In Python: the DHT11 Sensor

A South Plugin Example In Python: the DHT11 Sensor

Let’s try to put all the information together and write a plugin. We can continue to use the example of an inexpensive sensor, the DHT11, used to measure temperature and humidity, directly wired to a Raspberry PI. This plugin is available on github, Fledge DHT11 South Plugin.

First, here is a set of links where you can find more information regarding this sensor:

	DHT11 Product Description

	DHT11 Product Manual

	ADAFruit DHT Library

The Hardware

The DHT sensor is directly connected to a Raspberry PI 2 or 3. You may decide to buy a sensor and a resistor and solder them yourself, or you can buy a ready-made circuit that provides the correct output to wire to the Raspberry PI. This picture shows a DHT11 with resistor that you can buy online.

The sensor can be directly connected to the Raspberry PI GPIO (General Purpose Input/Output). An introduction to the GPIO and the pinset is available here. In our case, you must connect the sensor on these pins:

	VCC is connected to PIN #2 (5v Power)

	GND is connected to PIN #6 (Ground)

	DATA is connected to PIN #7 (BCM 4 - GPCLK0)

This picture shows the sensor wired to the Raspberry PI and this is a zoom into the wires used.

The Software

For this plugin we use the ADAFruit Python Library (links to the GitHub repository are above). First, you must install the library (in future versions the library will be provided in a ready-made package):

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
Cloning into 'Adafruit_Python_DHT'...
remote: Counting objects: 249, done.
remote: Total 249 (delta 0), reused 0 (delta 0), pack-reused 249
Receiving objects: 100% (249/249), 77.00 KiB | 0 bytes/s, done.
Resolving deltas: 100% (142/142), done.
$ cd Adafruit_Python_DHT
$ sudo apt-get install build-essential python-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
build-essential python-dev
...
$ sudo python3 setup.py install
running install
running bdist_egg
running egg_info
creating Adafruit_DHT.egg-info
...
$

The Plugin

This is the code for the plugin:

-*- coding: utf-8 -*-

FLEDGE_BEGIN
See: http://fledge-iot.readthedocs.io/
FLEDGE_END

""" Plugin for a DHT11 temperature and humidity sensor attached directly
 to the GPIO pins of a Raspberry Pi

 This plugin uses the Adafruit DHT library, to install this perform
 the following steps:

 git clone https://github.com/adafruit/Adafruit_Python_DHT.git
 cd Adafruit_Python_DHT
 sudo apt-get install build-essential python-dev
 sudo python setup.py install

 To access the GPIO pins fledge must be able to access /dev/gpiomem,
 the default access for this is owner and group read/write. Either
 Fledge must be added to the group or the permissions altered to
 allow Fledge access to the device.
 """

from datetime import datetime, timezone
import uuid

from fledge.common import logger
from fledge.services.south import exceptions

__author__ = "Mark Riddoch"
__copyright__ = "Copyright (c) 2017 OSIsoft, LLC"
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Python module name of the plugin to load',
 'type': 'string',
 'default': 'dht11'
 },
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }

}

_LOGGER = logger.setup(__name__)
""" Setup the access to the logging system of Fledge """

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = {'temperature': temperature, 'humidity': humidity}
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup, to be called prior to the device service being shut down.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 Raises:
 """
 pass

Building Fledge and Adding the Plugin

If you have not built Fledge yet, follow the steps described here. After the build, you can optionally install Fledge following these steps.

	If you have started Fledge from the build directory, copy the structure of the fledge-south-dht11/python/ directory into the python directory:

$ cd ~/Fledge
$ cp -R ~/fledge-south-dht11/python/fledge/plugins/south/dht11 python/fledge/plugins/south/
$

	If you have installed Fledge by executing sudo make install, copy the structure of the fledge-south-dht11/python/ directory into the installed python directory:

$ sudo cp -R ~/fledge-south-dht11/python/fledge/plugins/south/dht11 /usr/local/fledge/python/fledge/plugins/south/
$

Note

If you have installed Fledge using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/fledge/service -d '{"name": "dht11", "type": "south", "plugin": "dht11", "enabled": true}'

Note

Each plugin repo has its own debian packaging script and documentation, And that is the recommended way to go! As above method(s) may need explicit action for linux and/or python dependencies installation.

Using the Plugin

Once south plugin is added as an enabled service, You are ready to use the DHT11 plugin.

$ curl -X GET http://localhost:8081/fledge/service | jq

Let’s see what we have collected so far:

$ curl -s http://localhost:8081/fledge/asset | jq
[
 {
 "count": 158,
 "asset_code": "dht11"
 }
]
$

Finally, let’s extract some values:

$ curl -s http://localhost:8081/fledge/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:41:39.672",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:35.615",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:34.087",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:32.557",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:31.028",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 }
]
$

Clearly we will not see many changes in temperature or humidity, unless we place our thumb on the sensor or we blow warm breathe on it :-)

$ curl -s http://localhost:8081/fledge/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:43:16.787",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:15.258",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:13.729",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:12.201",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:05.616",
 "reading": {
 "temperature": 22,
 "humidity": 95
 }
 }
]
$

Needless to say, the North plugin will send the buffered data to the PI system using the OMF plugin or any other north system using the appropriate north plugin.

[image: DHT11 in PI] [https://s3.amazonaws.com/fledge-iot/readthedocs/images/06_dht11_tags_in_PI.jpg]

 Set Point Control

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the flags in the plugin information data structure which is returned by the plugin_info entry point of the plugin. The flag value SP_CONTROL should be added to the flags of the plugin.

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 SP_CONTROL, // Flags - add control
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 CONFIG // Default configuration
};

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

bool plugin_write(PLUGIN_HANDLE *handle, string name, string value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign top the item

The return value defines if the write was successful or not. True is returned for a successful write.

bool plugin_write(PLUGIN_HANDLE *handle, string& name, string& value)
{
Random *random = (Random *)handle;

 return random->write(operation, name, value);
}

In this case the main logic of the write operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

bool Random::write(string& name, string& value)
{
 if (name.compare("mode") == 0)
 {
 if (value.compare("relative") == 0)
 {
 m_mode = RELATIVE_MODE;
 }
 else if (value.compare("absolute") == 0)
 {
 m_mode = ABSOLUTE_MODE;
 }
 Logger::getLogger()->error("Unknown mode requested '%s' ignored.", value.c_str());
 return false;
 }
 else
 {
 Logger::getLogger()->error("Unknown control item '%s' ignored.", name.c_str());
 return false;
 }
 return true;
}

In this case the code is relatively simple as we assume there is a single control parameter that can be written, the mode of operation. We look for the known name and if a different name is passed an error is logged and false is returned. If the correct name is passed in we then check the value and take the appropriate action. If the value is not a recognized value then an error is logged and we again return false.

In this case we are merely setting a value within the plugin, this could equally well be done via configuration and would in that case be persisted between restarted. Normally control would not be used for this, but rather for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the mechanism.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	count the number of parameters

	params a set of name/value pairs that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed, that operation may also be passed a number of parameters. The count of these parameters are passed to the plugin in the count argument and the actual parameters are passed in an array of key/value pairs as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)
{
Random *random = (Random *)handle;

 return random->operation(operation, count, params);
}

In this case the main logic of the operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

/**
 * SetPoint operation. We support reseeding the random number generator
 */
bool Random::operation(const std::string& operation, int count, PLUGIN_PARAMETER **params)
{
 if (operation.compare("seed") == 0)
 {
 if (count)
 {
 if (params[0]->name.compare("seed"))
 {
 long seed = strtol(params[0]->value.c_str(), NULL, 10);
 srand(seed);
 }
 else
 {
 return false;
 }
 }
 else
 {
 srand(time(0));
 }
 Logger::getLogger()->info("Reseeded random number generator");
 return true;
 }
 Logger::getLogger()->error("Unrecognised operation %s", operation.c_str());
 return false;
}

In this example, the operation method checks the name of the operation to perform, only a single operation is supported by this plugin. If this operation name differs the method will log an error and return false. If the operation is recognized it will check for any arguments passed in, retrieve and use it. In this case an optional seed argument may be passed.

There is no actual machine connected here, therefore the operation occurs within the plugin. In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself.

 A South Plugin Example In C/C++: the DHT11 Sensor

A South Plugin Example In C/C++: the DHT11 Sensor

Using the same example as before, the DHT11 temperature and humidity sensor, let’s look at how to create the plugin in C/C++.

The Software

For this plugin we use the wiringpi C library to connect to the hardware of the Raspberry Pi

$ sudo apt-get install wiringpi
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
wiringpi
...
$

The Plugin

This is the code for the plugin.cpp file that provides the plugin API:

/*
 * Fledge south plugin.
 *
 * Copyright (c) 2018 OSisoft, LLC
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Amandeep Singh Arora
 */
#include <dht11.h>
#include <plugin_api.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string>
#include <logger.h>
#include <plugin_exception.h>
#include <config_category.h>
#include <rapidjson/document.h>
#include <version.h>

using namespace std;
#define PLUGIN_NAME "dht11_V2"

/**
 * Default configuration
 */
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "DHT11 C south plugin",
 "type" : "string",
 "default" : PLUGIN_NAME,
 "readonly": "true"
 },
 "asset" : {
 "description" : "Asset name",
 "type" : "string",
 "default" : "dht11",
 "order": "1",
 "displayName": "Asset Name",
 "mandatory" : "true"
 },
 "pin" : {
 "description" : "Rpi pin to which DHT11 is attached",
 "type" : "integer",
 "default" : "7",
 "displayName": "Rpi Pin"
 }
 });

/**
 * The DHT11 plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
 unsigned int pin;

 if (config->itemExists("pin"))
 {
 pin = stoul(config->getValue("pin"), nullptr, 0);
 }

 DHT11 *dht11= new DHT11(pin);

 if (config->itemExists("asset"))
 dht11->setAssetName(config->getValue("asset"));
 else
 dht11->setAssetName("dht11");

 Logger::getLogger()->info("m_assetName set to %s", dht11->getAssetName());

 return (PLUGIN_HANDLE)dht11;
}

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory conf("dht", newConfig);
DHT11 *dht11 = (DHT11*)*handle;

 if (conf.itemExists("asset"))
 dht11->setAssetName(conf.getValue("asset"));
 if (conf.itemExists("pin"))
 {
 unsigned int pin = stoul(conf.getValue("pin"), nullptr, 0);
 dht11->setPin(pin);
 }
}

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 delete dht11;
}
};

The full source code, including the DHT11 class can be found in GitHub https://github.com/fledge-iot/fledge-south-dht

Building Fledge and Adding the Plugin

If you have not built Fledge yet, follow the steps described here. After the build, you can optionally install Fledge following these steps.

	Clone the fledge-south-dht repository

$ git clone https://github.com/fledge-iot/fledge-south-dht.git
...
$

	Set the environment variable FLEDGE_ROOT to the directory in which you built Fledge

$ export FLEDGE_ROOT=~/fledge
$

	Go to the location in which you cloned the fledge-south-dht repository and create a build directory and run cmake in that directory

$ cd ~/fledge-south-dht
$ mkdir build
$ cd build
$ cmake ..
...
$

	Now make the plugin

$ make
$

	If you have started Fledge from the build directory, copy the plugin into the destination directory

$ mkdir -p $FLEDGE_ROOT/plugins/south/dht
$ cp libdht.so $FLEDGE_ROOT/plugins/south/dht
$

	If you have installed Fledge by executing sudo make install, copy the plugin into the destination directory

$ sudo mkdir -p /usr/local/fledge/plugins/south/dht
$ sudo cp libdht.so /usr/local/fledge/plugins/south/dht
$

Note

If you have installed Fledge using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/fledge/service -d '{"name": "dht", "type": "south", "plugin": "dht", "enabled": true}'

You may now use the C/C++ plugin in exactly the same way as you used a Python plugin earlier.

 Set Point Control

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the mode field in the plugin information dict which is returned by the plugin_info entry point of the plugin. The flag value control should be added to the mode field of the plugin. Multiple flag values are separated by the pipe symbol ‘|’.

plugin information dict
{
 'name': 'Sinusoid Poll plugin',
 'version': '1.9.2',
 'mode': 'poll|control',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
}

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

def plugin_write(handle, name, value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign to the item

The return value defines if the write was successful or not. True is returned for a successful write.

def plugin_write(handle, name, value):
 """ Setpoint write operation

 Args:
 handle: handle returned by the plugin initialisation call
 name: Name of parameter to write
 value: Value to be written to that parameter
 Returns:
 bool: Result of the write operation
 """
 _LOGGER.info("plugin_write(): name={}, value={}".format(name, value))
 return True

In this case we are merely printing the parameter name and the value to be set for this parameter. Normally control would be used for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the API.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

def plugin_operation(handle, operation, params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	params a list of name/value tuples that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed. The actual parameters are passed in a list of key/value tuples as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

def plugin_operation(handle, operation, params):
 """ Setpoint control operation

 Args:
 handle: handle returned by the plugin initialisation call
 operation: Name of operation
 params: Parameter list
 Returns:
 bool: Result of the operation
 """
 _LOGGER.info("plugin_operation(): operation={}, params={}".format(operation, params))
 return True

In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself. Above example is just a demonstration of the API.

 Building Notification Service

Building Notification Service

As with Fledge itself there is always the option to build the notification service from the source code repository. This is only recommended if you also built your Fledge from source code, if you did not then you should first do this before building the notification, otherwise you should install a binary package of the notification service.

The steps involved in building the notification service, assuming you have already built Fledge itself and the environment variable FLEDGE_ROOT points to where you built your Fledge, are;

$ git clone https://github.com/fledge-iot/fledge-service-notification.git
...
$ cd fledge-service-notification
$./requirements.sh
...
$ mkdir build
$ cd build
$ cmake ..
...
$ make
...

This will result in the creation of a notification service binary, you now need to copy that binary into the Fledge installation. There are two options here, one if you used make install to create your installation and the other if you are running directly form the build environment.

If you used make install to create your Fledge installation then simply run make install to install your notification service. This should be run from the build directory under the fledge-service-notification directory.

$ make install

Note

You may need to run make install under a sudo command if your user does not have permissions to write to the installation directory. If you use a DESTDIR=… option to the make install of Fledge then you should use the same DESTDIR=… option here also.

If you are running your Fledge directly from the build environment, then execute the command

$ cp ./C/services/notification/fledge.services.notification $FLEDGE_ROOT/services

_images/control_01.jpg
Notification Instance

Trigger Value

Cleared Value

Enabled

Rule

Previous

"write":

"name" :

"write":

"name" :

{

{

Delivery Channel

"value"

"value"

Done

_images/csv_1.jpg
o—0

Plugin & Service Name Review Configuration
Asset Name Vibration
Datapoint ch
Multi-Column 5]
Path Of File

Previous

Done

_images/config_2.png
rtrr South Service

Stream Protocol wp v
Camera ID 0 N
Enable Detection Window
Enable Web Streaming @
Web Streaming Port 8085

‘Show Advanced Config
Enabled

Applications ©

= -

@ ExportReadings Delete Service

_images/connection_https.jpg
Connection Setup

Host Port

https v foglamp-18.local 1995

_images/csv_config1.jpg
o—— 0@

Plugin & Service Name Review Configuration
Asset name vibration
CSV directory name FLEDGE DATA

CSV file pattern
Header processing method do_not_skip v
Data point for header rows metadata

Number of rows to skip or pass in 1

datapoint
Dynamic columns o

Column processing method pick_from_file v
Auto generate prefix column

Column names and data types for explicit

Done

_images/csv_config2.jpg
Ro

dex for column names
Ingest mode
Sample rate

Burst interval (ms)

iestamp processing mode

imestamp column name
Timestamp format
Ignore or report for NaN
Post process method

Suffix name

Previous

burst v

8000

1000

current time v

Y5 THAM%S %%z

ignore v

continue_playing v

tmp

_images/coap_1.jpg
0—— 0O

Plugin & Service Name Review Configuration

Port 5683

URI sensor-values

Previous

Done

_images/config_1.png
rtrr South Service

TFlite Model File
Labels File
Asset Name

Enable Edge TPU

um Confidence Threshold
Source For Detection Camera/Stream
Stream URL

Opencv Backend

Stream Protocol

Camera ID

Enable Detection Window

detecttfite

coco_labels txt

person._detection_4

0s

stream v

5p/192.168.0.109.8554/clip

_images/chat_5.jpg
@ Chat ® Active ¥

Find people, rooms, bots Q

PEOPLE

Find someone to chat with using the
filter box above.

ROOMS

Fledge Notifications

BOTS +

Bots can automate tasks or send
timely updates.

Fledge Notifications 1member ~
4

Fledge Notifications

You created this room today

&+ Add people & bots

¥ Unread

TODAY

;\b Fledge Tank Monitor Bot Now e
@ Tanks

ALERT for ruleTank 4
Notification has triggered

Tank 4 is nearly full

0~

+ New thread in Fledge Notifications

a & @ # @

Follow

_images/chat_6.jpg
Incoming webhooks
View Documentation

& Fledge Tank Monitor [}

https://chat googleapis.com/v1/spaces/AAAALGAVVRI/messages?key=AlzaSyDd

_images/asset.jpg
o— 0

Plugin Name Review Configuration
Asset rules =
~2 'rules": [
~3 {
4 "asset_name" : "temperature",
5 "action" : "rename",
6 "new_asset_name" : "abient"
7 4
8 1
9}
Enabled

Previous

_images/asset1.jpg
Notification Instance

CustomAsset
Description

JSON Configuration

Enabled
Enable authentication

Username

Password

Rule Delivery Channel

event

Notification alert

1
2% "sinusoid": [
3v {

4 "sinusoid":
5 }

6 1

7)

max.mustermann

"cosinusoid”

Done

_images/am2315_1.jpg

_images/am2315_2.jpg
o—

Plugin & Service Name Review Configuration
Asset Name am2315/%M/
12C Address 0x5C

Previous

Done

_images/automation_1.jpg
Dashboard

Assets & Readings
South

North

Notifications

ontrol

Configuration

ke

Scripts

Name

mod1

Add +

_images/automation_10.jpg
step
Name.
Execution

Parameters

Seript

Select script «

Unlock Lathe

+ Add parameter

_images/asset_1.jpg
Notification Instance

Asset
Description

Enabled

Previous

Rule

event

Notification alert

u]

Delivery Channel

Done

_images/authentication.jpg
Certificate Name fledge

Authentication

optional
Authentication password ¥
method

_images/automation_11.jpg
step Script

Name Unlock Lathe ~
Execution Select execution type ~
Parameters

Blocking

Non Blocking

_images/automation_12.jpg
Step Write v o

Service Select south service v

Values
modc

Sine
modbus2
+ Add new step Coolant
HTTPIn
Lathe

MQTTTest Cancel -

Open62451

S20PCUA

Spinnaker

_images/automation_16.jpg
step

Service

Values

Condition

+ Add new step

Wiite

Coolant v

rate

+ Add new value

Stiows

25

_images/automation_17.jpg
Scripts | Add

Name lluminate

Steps
step

+ Add new step

ACL None

Choose step type

_images/automation_14.jpg
step Write
Service Coolant v
Values rate 25

+ Add new value

_images/automation_15.jpg
step Write

Service Coolant v

Values rate 25
+ Add new value

Condition Stiows

_images/automation_4.jpg
step Wiite

Service mode v

Values value2 1

+ Add new value

+ Add conditi

_images/automation_5.jpg
step

+ Add new step

Choose step type

Configure
Delay
Operation
Seript

write

_images/automation_2.jpg
Scripts | modl &

Name mod1 @

step write L)
Service mode ~
Values value2 1

+ Add new value

Step. Delay o

Duration 3000

step write L)
Service mode ~
Values valuez o

+ Add new value

+ Add condition

+ Add new step

ACL v

Cancel

_images/automation_3.jpg
Scripts | mod1 &

Name mod1

Steps
step

Service

Values

Step Delay

Duration 3000

Wiite

modec v

value2

+ Add new value

+ Add condition

service

Values

+ Add new step

ACL

modc v

value2

+ Add new value

Cancel -

_images/automation_6.jpg
step

category

+ Add new step

Configure

Select category v

» Advanced

» Dispatcher

» General

Greyscale

v North
HTTP North
Kafka
MQTT
NorthPython
OPCUA Server
OPCUAT

Cancel

_images/automation_13.jpg
step

Service

Values

Wiite
Coolant +
+ Add new value

+ Add condi

_images/average_2.jpg
Notification Instance

Asset
Deviation %
Direction
Average

EMA Factor

Previous

Rule

temperature
10
Simple Moving Average

10

(2]

Delivery Channel

v

Done

_images/average_3.jpg
Deviation % Above Average

Below Average

Direction

_images/automation_9.jpg
step

Name.

Service

Parameters

Operation
shutdown
Lathe v

+ Add new parameter

+ Add conc

_images/average_1.jpg
0o——0 (2] (<]

Notification Instance Rule Delivery Channel Done

Rule Plugin Average

OutOfBound

Trigger if the current value deviates from the moving average by more than a

SimpleExpression | defned percentage

Threshold

Previous

_images/botfather.jpg
nars e
o BotFather &

Inewbot 1035

Alright, a new bot. How are we going to
callit? Please choose a name for your
bot.

Fledge 1035,

Good. Now let's choose a username for
your bot. It must end in “bot". Like this,
for example: TetrisBot or tetris_bot.

FledgeBot 5.

Sorry, this username is already taken.
Please try something different.

MyFledgrBot 150,

Done! Congratulations on your new

bot. You will find it at tme/

MyFledgrBot. You can now add a
description, about section and profile
picture for your bot, see /help for a list

of commands. By the way, when you've
finished creating your cool bot, ping

our Bot Support if you want a better
username for it. Just make sure the bot

is fully operational before you do this.

@ (XY

_images/cc2650.jpg

_images/average_4.jpg
Average v Simple M
Exponential Moving Average

EMA Factor 10

_images/azure.jpg
o———0© ()

Plugin & Name Review Configuration Done

j=<Device Key>

Primary Connection String HostName=<Host Name>;Deviceld=<Device Name>;SharedAccesski

MQTT over websockets

Source readings v
Apply Filter

Filter Rule

Back

_images/automation_7.jpg
Step Configure. v o

category Kafka v

Config Item simple plugin to send data to a Kafka topic v | = Kafka

simple plugin to send data'to ..
Bootstrap Brokers
+ Add new step
Kafka Topic
Send JSON =
Data Source

A switch that can be used to e...

Identifies the specific stream...

Filter pipeline

_images/automation_8.jpg
Step Operation v @

Name.

Service Select service v

Parameters
modc

Sine
modbus2
+ Add new step Calait
HTTPIn
Lathe

MQTTTest Cancel

Open62451

S20PCUA

Spinnaker

_images/change_role.jpg
Update User Role

Username

user

Role

user

_images/chat_1.jpg
®0®@® © chat x +

&« C & chat.google.com B w O 0 :

@ Chat ® Active v @ B

Find people, rooms, bots @

PEOPLE

Find someone to chat with using the
filter box above.

ROOMS
Rooms are where the team magic

happens. Find or create a room
using the filter box above.

BOTS +

Bots can automate tasks or send
timely updates.

_images/certs.jpg
Certificate Store &

Key
admin
ca

fledge

user

Extension
key
key
key

key

delete

delete

delete

Certificate
admin

ca

fledge
user

Extension

cert

cert

cert

cert

BE

Import &,

_images/change.jpg
 r—@Q)

Plugin Name Review Configuration
Asset fam

Trigger curtent

Required Change % 5

Pre-trigger time (mS) 500

Post-trigger time (mS) 500

Reduced collection rate 2

Rate Units perhour v

Enabled

Previous

_images/chat_4.jpg
Notification Instance

Google Hangout Webhook URL
Message Text

Enabled

Previous

(3] (]

Rule Delivery Channel Done

https://chat.googleapis.com/v1/spaces/AAAALGAVVRI/messages?key=AlzaSyDdIONCZtEGvySiMm-WEIRq3CPzaKqasHI&token=ZlI2c

Tank 4 s nearly full

_images/chat_2.jpg
Fledge Notifications 1member ~

o)
=1

o
Q+

7
@

b

View members
Add people & bots
Rename

Configure webhooks

Star

Turn off notifications
@mentions will still notify

Leave
You can always return

i P

_images/chat_3.jpg
Incoming webhooks

View Documentation

Fledge Tank Monitor]

Avatar URL

Optional; min size 128 x 128px

_images/certificate_store.jpg
= . Fledge @ foglamp-18/Fledge Demo Received: 44,751 Sent:0 Uptime: 2 days, 18:37:40 admin v

Dashboard

Assets & Readings Certificate Store & Import &

South

Key Extension Certificate Extension
North
Notifications admin key delete admin cert delete
Configuration ca key delete ca cert delete
Schedules fledge key fledge cert

Certificate Store user key delete user cert delete

Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

User Management

Support
Settings © 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/certificatestore-import.jpg
Upload Certificate

Key & [Choose File | myclientkey.pem

Certificate &, [Choose File | myclientcert.der

O Overwrite

Overwrite allows to replace the existing key or

_images/cc2650_1.jpg
o—— 0O

Plugin & Service Name

Bluetooth Address

Asset Name Prefix
Shutdown Threshold
Connection Timeout
Temperature Sensor
Temperature Sensor Name
Luminance Sensor
Luminance Sensor Name
Humidity Sensor

Humidity Sensor Name
Pressure Sensor

Pressure Sensor Name
Movement Sensor
Gyroscope Sensor Name
Accelerometer Sensor Name
Magnetometer Sensor Name
Battery Data

Battery Sensor Name

Previous

Review Configuration

B0:9122EA79:04

cc26s01n

temperature

humidity

pressure

gyroscope

accelerometer

magnetometer

battery

Done

nav.xhtml

 Table of Contents

 		
 Welcome to Fledge’s documentation!

 		
 Introduction to Fledge

 		
 Typical Use Cases

 		
 Architectural Overview

 		
 No-code/Low-code Development

 		
 Quick Start Guide

 		
 Installing Fledge

 		
 Using the package repository to install Fledge

 		
 Installing Fledge downloaded packages

 		
 Checking package installation

 		
 Run with PostgreSQL

 		
 Starting and stopping Fledge

 		
 Troubleshooting Fledge

 		
 Running the Fledge GUI

 		
 Fledge Dashboard

 		
 Managing Data Sources

 		
 Adding Data Sources

 		
 Configuring Data Sources

 		
 Enabling and Disabling Data Sources

 		
 Viewing Data

 		
 Display Graph

 		
 Download Data

 		
 Sending Data to Other Systems

 		
 Adding Data Destinations

 		
 Configuring Data Destinations

 		
 Enabling and Disabling Data Destinations

 		
 Using the OMF plugin

 		
 PI Web API OMF Endpoint

 		
 Edge Data Store OMF Endpoint

 		
 OSIsoft Cloud Services OMF Endpoint

 		
 PI Connector Relay

 		
 Naming Scheme

 		
 Asset Framework Hierarchy Rules

 		
 OMF Hints

 		
 Number Format Hints

 		
 Integer Format Hints

 		
 Type Name Hints

 		
 Type Hint

 		
 Tag Name Hint

 		
 Datapoint Specific Hint

 		
 Asset Framework Location Hint

 		
 Adding OMF Hints

 		
 Backing up and Restoring Fledge

 		
 Troubleshooting and Support Information

 		
 Package Uninstallation

 		
 Debian Platform

 		
 Processing Data

 		
 Why Use Filters?

 		
 What Can Be Done?

 		
 Where Can it Be Done?

 		
 Adding a South Filter

 		
 Adding Filters To The North

 		
 Some Useful Filters

 		
 Scale

 		
 Metadata

 		
 Delta

 		
 Rate

 		
 Fledge Architecture

 		
 Fledge Core

 		
 Storage Layer

 		
 South Microservices

 		
 North Microservices

 		
 Filters

 		
 Event Service

 		
 Set Point Control Service

 		
 REST API

 		
 Graphical User Interface

 		
 Buffering & Storage

 		
 Configuring The Storage Plugin

 		
 SQLite Plugin Configuration

 		
 Installing A PostgreSQL server

 		
 Ubuntu Install

 		
 SQLite Plugin Configuration

 		
 Storage Management

 		
 Purge Task

 		
 System Purge Task

 		
 Additional Services

 		
 Notifications Service

 		
 Notifications

 		
 Installing the Notification Service

 		
 Starting The Notification Service

 		
 Configuring The Notification Service

 		
 Using The Notification Service

 		
 Fledge Control Features

 		
 Control Functions

 		
 Set Point

 		
 Operation

 		
 Control Paths

 		
 Edge Based Control

 		
 End to End Control

 		
 Control Dispatcher Service

 		
 Forwarding Requests

 		
 Automation Scripts

 		
 Access Control Lists

 		
 Configuration

 		
 Plugin Documentation

 		
 Fledge South Plugins

 		
 AM2315 Temperature & Humidity Sensor

 		
 CC2650 SensorTag

 		
 CoAP

 		
 Simple CSV Plugin

 		
 CSV Playback

 		
 DHT11 (C version)

 		
 DHT11 (Python version)

 		
 DNP3 Master Plugin

 		
 Expression South Plugin

 		
 Flir AX8 Thermal Imaging Camera

 		
 South HTTP

 		
 INA219 Voltage & Current Sensor

 		
 Lathe Simulation

 		
 Modbus South Plugin

 		
 South MQTT

 		
 MQTT Sparkplug B

 		
 OPC/UA South Plugin

 		
 Person Detection Plugin

 		
 Playback Plugin

 		
 PT100 Temperature Sensor

 		
 Random

 		
 Random Walk

 		
 Enviro pHAT Plugin

 		
 OPC/UA Safe & Secure South Plugin

 		
 SenseHAT

 		
 Sinusoid

 		
 System Information

 		
 Advantech USB-4704

 		
 Fledge North Plugins

 		
 OMF

 		
 Azure IoT Hub

 		
 Google Cloud Platform North Plugin

 		
 HarperDB

 		
 North HTTP

 		
 North HTTP-C

 		
 Kafka Producer

 		
 ThingSpeak

 		
 Fledge Filter Plugins

 		
 Asset Filter

 		
 Change Filter

 		
 Delta Filter

 		
 Expression Filter

 		
 Fast Fourier Transform Filter

 		
 Flir Validity Filter

 		
 Log Filter

 		
 Metadata Filter

 		
 OMF Hint Filter

 		
 Python 2.7 Filter

 		
 Python 3.5 Filter

 		
 Rate Filter

 		
 Rename Filter

 		
 Replace Filter

 		
 Root Mean Squared (RMS) Filter

 		
 Scale Filter

 		
 Scale Set Filter

 		
 Threshold Filter

 		
 Fledge Notification Rule Plugins

 		
 Threshold Rule

 		
 Moving Average Rule

 		
 Delta Rule

 		
 Expression Rule

 		
 Watchdog Rule

 		
 Fledge Notification Delivery Plugins

 		
 Amazon Alexa Notification

 		
 Asset Notification

 		
 Control Dispatcher Notification

 		
 Custom Asset Notification

 		
 Email Notifications

 		
 Google Chat

 		
 IFTTT Delivery Plugin

 		
 MQTT Notification

 		
 Operation Notification

 		
 Python 3 Script

 		
 Set Point Control Notification

 		
 Slack Messages

 		
 Telegram Messages

 		
 Developing Data Pipelines

 		
 Best Practices

 		
 Incremental Development

 		
 OMF Specific Considerations

 		
 Examining Data

 		
 Examining Logs

 		
 Enabling and Disabling Filters

 		
 Scripting Plugins

 		
 Securing Fledge

 		
 Enabling HTTPS Encryption

 		
 Requiring User Login

 		
 Changing Your Password

 		
 Password Rotation Mechanism

 		
 User Management

 		
 Adding Users

 		
 Changing User Roles

 		
 Reset User Password

 		
 Delete A User

 		
 Certificate Store

 		
 Tuning Fledge

 		
 South Service Advanced Configuration

 		
 Tuning Buffer Usage

 		
 North Advanced Configuration

 		
 Health Monitoring

 		
 Scheduler

 		
 Storage

 		
 Choosing A Storage Plugin

 		
 Troubleshooting the PI Server integration

 		
 Log files

 		
 How to check the PI Web API is installed and running

 		
 Commands to check the PI WEB API

 		
 Error messages and causes

 		
 OMF Plugin Data

 		
 Managing Plugin Persisted Data

 		
 Understanding The OMF Persisted Data

 		
 Possible solutions to common problems

 		
 Plugin Developer Guide

 		
 Source Code Documentation

 		
 Plugins

 		
 Plugins in this version of Fledge

 		
 Installing New Plugins

 		
 Representing Data

 		
 Writing and Using Plugins

 		
 Common Fledge Plugin API

 		
 Configuration Lifecycle

 		
 South Plugins

 		
 Polled Mode

 		
 Async IO Mode

 		
 Set Point Control

 		
 A South Plugin Example In Python: the DHT11 Sensor

 		
 South Plugins in C

 		
 Polled Mode

 		
 Async IO Mode

 		
 Set Point Control

 		
 A South Plugin Example In C/C++: the DHT11 Sensor

 		
 C++ Support Classes

 		
 Reading

 		
 Configuration Category

 		
 Logger

 		
 Hybrid Plugins

 		
 North Plugins

 		
 Python Plugins

 		
 C/C++ Plugins

 		
 Set Point Control

 		
 Storage Plugins

 		
 Data and Metadata

 		
 Common Elements for Storage Plugins

 		
 Filter Plugins

 		
 Configuration

 		
 C++ Filter Plugin API

 		
 C++ Filter Example

 		
 Python Filter API

 		
 Python Filter Example

 		
 Notification Delivery Plugins

 		
 Configuration

 		
 Notification Delivery Plugin API

 		
 Plugin Packaging

 		
 Common files

 		
 C based Plugins

 		
 Python based Plugins

 		
 Building A Package

 		
 Testing Your Plugin

 		
 Initial Testing

 		
 C/C++ Common Faults

 		
 Running Under a Debugger

 		
 Using strace

 		
 Memory Leaks and Corruptions

 		
 Python Plugin Info

 		
 Developing with Windows Subsystem for Linux (WSL2)

 		
 Preparing the Development Environment

 		
 Starting the Linux Distribution

 		
 Configuring Visual Studio Code

 		
 Known Problems

 		
 References

 		
 REST API Developers Guide

 		
 The Fledge REST API

 		
 Introducing the Fledge REST API

 		
 Administration API Reference

 		
 Audit Trail

 		
 Configuration Management

 		
 Task Management

 		
 Other Administrative API calls

 		
 User API Reference

 		
 Browsing Assets

 		
 Building Fledge

 		
 Building Developers Guide

 		
 Introduction

 		
 Building Fledge

 		
 Fledge Installation

 		
 Testing Fledge

 		
 Fledge Utilities and Scripts

 		
 Fledge Tasks

 		
 Building and using Fledge on Raspbian

 		
 OMF Kerberos Authentication

 		
 Introduction

 		
 PI Server as the North endpoint

 		
 North plugin

 		
 Fledge server configuration

 		
 IP Address resolution of the KDC

 		
 Kerberos client configuration

 		
 Kerberos keytab file

 		
 Troubleshooting the Kerberos authentication

 		
 Fledge Plugins

 		
 South Plugins

 		
 North Plugins

 		
 Filter Plugins

 		
 Notification Rule Plugins

 		
 Notification Delivery Plugins

 		
 Version History

 		
 Fledge v2

 		
 v2.0.0

 		
 Fledge v1

 		
 v1.9.2

 		
 v1.9.1

 		
 v1.9.0

 		
 v1.8.2

 		
 v1.8.1

 		
 v1.8.0

 		
 v1.7.0

 		
 v1.6.0

 		
 v1.5.2

 		
 v1.5.1

 		
 v1.5.0

 		
 v1.4.1

 		
 v1.4.0

 		
 v1.3.1

 		
 v1.3

 		
 v1.2

 		
 v1.1.1

 		
 v1.1

 		
 v1.0

 		
 Downloads

 		
 Packages

 		
 Download/Clone from GitHub

 		
 Glossary

_images/notification_log.jpg
. Fledge @ foglamp-18/Fledge Demo Received: 98,181 Sent: 0 Uptime: 00:08:34

Dashboard

Assets & Readings Notification Logs &

Count: 13
South
North ALL v INFORMATION v
Notifications
) Timestamp Name Severity Source

Configuration

2020-04-2110:34:57 Above0.5 INFORMATION NTFSN
Schedules

2020-04-2110:33:57 Above0.5 INFORMATION NTFSN
Certificate Store

2020-04-2110:32:57 Above0.5 INFORMATION NTFSN
Backup & Restore 2020-04-2110:31:57 Above0.5 INFORMATION NTFSN
Logs 2020-04-2110:28:49 MyNotificationService INFORMATION ~NTFST

2020-04-2109:41:48 MyNotificationService INFORMATION NTFST

Audit
2020-04-2109:20:15 MyNotificationService INFORMATION ~ NTFST
Notification

2020-04-2109:15:32 Above0.5 INFORMATION ~ NTFAD
Packages

2020-04-2014:47:38 MyNotificationService INFORMATION ~ NTFST
System

2020-04-2014:28:17 MyNotificationService INFORMATION ~ NTFST
Tasks

2020-04-2013:56:17 MyNotificationService INFORMATION ~ NTFST

Support 2020-04-2013:54:27 MyNotificationService INFORMATION ~NTFST

Settings 2020-04-2011:22:38 MyNotificationService INFORMATION ~ NTFST

Q

_images/notification_settings.jpg
MyNotificationService Notification Service

Minimum Log Level warning v

Maximun number of 2
delivery threads

Enabled

Eencel -

Delete Service

_images/notification_log_type.jpg
Notification Logs &
Count: 13

ALL v INFORMATION

ALL 3
Severity Source

NTFDL - Notification Deleted
INFORMATION ~ NTFSN

NTFAD - Notification Added
INFORMATION NTFSN

NTFSN - Notification Sent
INFORMATION NTFSN

NTFCL - Notification Cleared
INFORMATION NTFSN

NTFST - Notification Server Startup
INFORMATION ~ NTFST

NTFSD - Notification Server Shutdown INFORIMATION TEST
2020-04-2109:20:15 MyNotificationService INFORMATION NTFST
2020-04-2109:15:32 Above0.5 INFORMATION ~ NTFAD
2020-04-20 14:47:38 MyNotificationService INFORMATION NTFST
2020-04-2014:28:17 MyNotificationService INFORMATION NTFST
2020-04-2013:56:17 MyNotificationService INFORMATION NTFST
2020-04-2013:54:27 MyNotificationService INFORMATION NTFST

2020-04-2011:22:38 MyNotificationService INFORMATION ~ NTFST

_images/omf-plugin-connector-relay.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

OCS Tenant ID

0oCs Client ID

OCS Client Secret

Connector Relay v

localhost

omf_north_0001

readings v

Location: Palo Alto,

ompany: Dianomic

10

int6a
float64

fledge/data

1}

_images/notification_settings_icon.jpg

_images/omf-plugin-eds.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

0CS Tenant ID

0oCs Client ID

OCS Client Secret

Edge Data Store

Concise v

om_north_0001
readings v

Location: Palo Alto, Company: Dianomic

1

10
int6a

float64

ledge/data_piwebapi/default

1

user id

S

bapi_kerberos_https.keytab

_images/omf-plugin-connector-relay1.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

OCS Tenant ID

0oCs Client ID

OCS Client Secret

Connector Relay v

localhost

omf_north_0001

readings v

Location: Palo Alto,

ompany: Dianomic

10

int6a
float64

fledge/data

1}

_images/omf-plugin-ocs.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

0CS Tenant ID

0oCs Client ID

OCS Client Secret

OSlsoft Cloud Services

Concise v

omf_north_0001

readings v

Location: Palo Alto, Company: Dianomic

1

10

int6a

float64

ige/data_piwebapi/default

1 {3

user id

pivebapi_kerberos_https keytab

name_space

ocs_tenant id

ocs_client id

_images/omf-plugin-eds1.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

0CS Tenant ID

0oCs Client ID

OCS Client Secret

Edge Data Store

Concise v

om_north_0001
readings v

Location: Palo Alto, Company: Dianomic

1

10
int6a

float64

ledge/data_piwebapi/default

1

user id

S

bapi_kerberos_https.keytab

_images/omf-plugin-ocs1.jpg
Endpoint

Send full structure

Naming Scheme
Server hostname

Server port, 0=use the default
Producer Token

Data Source

Static Data

Sleep Time Retry

Maximum Retry

HTTP Timeout

Integer Format

Number Format

Compression

Default Asset Framework
Location

Asset Framework hierarchy rules

Pl Web API Authentication
Method

Pl Web API User Id

Pl Web API Password

Pl Web API Kerberos keytab file
0CS Namespace

0CS Tenant ID

0oCs Client ID

OCS Client Secret

OSlsoft Cloud Services

Concise v

omf_north_0001

readings v

Location: Palo Alto, Company: Dianomic

1

10

int6a

float64

ige/data_piwebapi/default

1 {3

user id

pivebapi_kerberos_https keytab

name_space

ocs_tenant id

ocs_client id

_images/notification_2.jpg
® (2]

Notification Instance Rule

o

Delivery Channel

Done

Name ‘ Above0.5|

Description Above0.5 notification instance

Back

_images/notification_1.jpg
= & Fledge
Dashboard

Assets & Readings
South

North

Notifications

- Configuration

Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings

@ foglamp-18/Fledge Demo Received: 92,998 Sent: 0 Uptime: 18:22:45
Notification Instance Rule Delivery Channel
Name
Description

Back

© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

Done

Q

_images/notification_4.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

(2] (2]

Rule Delivery Channel

FastSine

sinusoid

05

Single Item v

Average v

30

Done

_images/notification_3.jpg
Notification Instance Rule

Rule Plugin Average

OutOfBound

SimpleExpression

Threshold

available plugins

Previous

(2]

Delivery Channel

Generate a notification when datapoint value crosses a boundary.

Done

_images/notification_6.jpg
o O °) (<]

Notification Instance Rule Delivery Channel Done

Delivery Plugin alexa
asset
Blynk

email

available plugins

Previous

_images/notification_5.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

Rule

FastSine

sinusoid

05

Maximum "

Mi um

30

(2]

Delivery Channel

Done

_images/notification_8.jpg
Notification Instance

Trigger

Enabled one shot
retriggered
toggled

Rule

Delivery Channel

ne

o————0O

Done

_images/notification_7.jpg
o (2] o o

Notification Instance Rule Delivery Channel Done

Slack Webhook URL https://hooks.slack.com/services/T2GBZ52AF/BGFNTP7NG/YJxQwiJda5ZHMirFZqUjUc
Message Text The value of the sinusoid is greater than 0.5

Enabled)

Previous

_images/notification_list.jpg
= & Fledge @ foglamp-18/Fledge Demo Received: 98,064 Sent:0 Uptime: 00:06:34 o e

Dashboard
Assets & Readings Notifications & Create Notification Instance + %

South

North Name Channel Rule Type Status

Above0.5 slack Threshold oneshot ([EEEED)
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings
© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/notification_edit.jpg
Above0.5

Asset name sinusoid
Datapoint name sinusoid
Condition

Trigger value 05
Evaluation data Single ltem v
Window evaluation Maximum ¥

Time window 30

Slack Webhook URL https://hooks.slack.com/services/T2GBZ52AF/BLHAEQVPX/SpTueik9t73KSaNSe3

Message Text The value of the sinusoid is greater than 0.5

Enabled v

_images/harper.jpg
URL

Username

Password

Schema

Source

o—0@

Plugin & Name

Back

Review Configuration

http:fflocalnost:9925/

fledge

readings

Done

_images/systeminfo_3.jpg
system/processes
5 minutes ~ Graph Summary

| runing. [N siooping. [N stopped NN pacing [N ceac NN zombie

80

0

60

50

W

3

20

—_— A A A A A A A A A A A M

 —
MA01 MBEN 1120 1E8131 18T MSES 118201 118211 1A221 118281 114241 113251 13801 11831 118321 18831 1341 L8381 113401 13K 113421 11:0431

_images/systeminfo_2.jpg
Rsset
system/cpubsage.all
system/diskTraffic_loop0.
systemjdiskTraicJoop1
systemdiskTrafic_loop2
system/diskTraffc_sda
systemdiskTrafic_sdb
system/diskUsage_dev/loop0
system/diskUsage_devloop!
system/diskUsage_devisda2
systemdiskUsage.devsdbt
system/iskUsage_tmpfs
systemdiskUsage.udev
systemhostName
system/loadhverage
system/meminfo
systemnetworkTraffic_enp0s3

systemjnetworkTraft

system/pagingAndSwappingEvents
systemjplatform
systemjprocesses

systemjuptime

Readings
9
9
%
9
9
%
%
9
%
%

an
%
%
%
%

9
%
9
%
04

EREERERRERRRRRRERRRERRRERERR
L e o S S O T S

_images/http_11.jpg
Plugin & Name

Proxy
Source.

Headers

Seript

Sloep Time Retry

Maximum Retry

Hutp Timeout (in seconds)

Verify St

Back

@

Review Configuration

[T —

Done

_images/telegram_2.jpg
397 q

chats Fledge

fstart 0.

[get status ;5.

Pump 7 Rate has been ‘riggered:
'ALERT for rulePump 7 Rate'

e

_images/http_1.jpg
O=——0 (2]

Plugin & Name Review Configuration Done
URL http:/localhost:6683/sensor-reading
Source readings v
Verify SSL o
Apply Filter s]
Filter Rule 0

Back

_images/telegram_1.jpg
Notification Instance

Telegram BOT API token
Telegram user chat_id
Telegram BOT API url prefix

Enabled

Rule

https://api.telegram.or/bot

Previous

Delivery Channel

Done

_images/ifttt_1.jpg
marke@ri.

Account
Activity
My Applets
My services
Create
Help

Sign out

_images/thingspeak_2.jpg
[ThingSpeak

Chan

New Channel

Description

Link to External
site

Link to GitHub,

Elevation

Show Channel
Location

Show Status

Field Label 1

(735 v comma seprted)

g/

s fgthub com)

00

00

hapy/

Help

Channelsstorealthe datathat a ThingSpeak applicaton calects. Each channel includes.
eightfieds that can hold any type of dats, plus three ields forlocation data and onefor
status data. Once you collect data in achannel,you can use ThingSpeak apps o analyze
andvisualizeit.

Channel Settings

« Percentage complete: Calculated based on data entered nto the variousfelds
of a channel. Ente the name, description,lcation, URL,video, and tags to complete:
your channel.

« Channel Name: Enter a unique name fo the ThingSpeak channel.
 Description: Enter a description ofthe ThingSpeak channel.

 Field: Check the box o enable the field,and enter field name. Each ThingSpeak
channel can have up o’ felds.

« Metadata: Enterinformation about channel data, including JSON, XML, or CSV
dita,

« Tags: Enterkeywords thatideniythechannel Seporae tags vithcommas.

« Link to External Site: Ifyou have a website that contain information about your
ThingSpeak channel specifythe URL.

« Show Channel Location:

o Latitude: Specity thelatitude postionin decima degrees. For example,the
laitude of th ity ofLondonis 515072

© Longitude: Specify the longitude positionindecimal degrees. For ecamle,
the longitude of the ity of London s-0.1275.
© Elevation: Specifythe levation position meters.For example,the elevation
oftheciy of Londonis 35,052
« Video URL: Ifyou have a YouTuber™ or Vimeo®video thatdisplays your channel
information, speciy the fullpath ofthe video URL.
« Link o GitHul
repository URL.

youstore your ThingSpeak code on GitHub®,specify the Github

Using the Channel

Vou can gt datanto a channel from a device, websie,or anather ThingsSpeak channel,
You canthen visualize data and transformit using ThingSpeak Apps.

See Get Started with ThingSpeak” for an example of measuring dew point from a
weatherstation that acquires data from an Arduino® device

Learn More

_images/http_12.jpg
e 1

Plugin & Service Name

Host

Port

URI

Asset Name Prefix
Enable HTTP
HTTPS Port

Certificate Name

Previous

Review Configuration

0000
6683
sensor-reading
http-

6684

fledge

Done

_images/thingspeak_1.jpg
L1 ThingSpeak™ channels - = Apps~ Support~ Commercial Use ~ HowtoBuy MR

My Channels Help

Collect data in a ThingSpeak channel from a device,

’ Search by ta
te AL E from another channel, or from the web.
Click New Channel to create a new ThingSpeak
Name Created Updated channel.
N Click on the column headers of the table to sort by the
& sinusoid 20180808 2019-07-26 15:04

entries in that column or click on a tag to show channels
thattag.

Private | Public | Settings | Sharing | APIKeys | Datalmport / Export

Learn to create channels, explore and transform data.

Learn more about ThingSpeak Channels.

Examples

o Arduino

Arduino MKR1000
ESP8266
Raspberry Pi
Netduino Plus

Upgrade
Need to send more data faster?

Need to use ThingSpeak for a commercial project?

_images/import.jpg
Upload Certificate

Key & Choose file | Nofile chosen

Certificate 2, [Grossofie Jno e chosen

) Overwrite
rite allows to replace the existing key or certificate

_images/thingspeak_4.jpg
o———0© (]

Plugin & Name Review Configuration Done
URL httpsjapi.thingspeak.com/channels
APIKey
Source readings v
Fields i i
2v "elements": [
3v {
4 "asset": "sinusoid",
5 "reading": "sinusoid"
6 }
7 1
8)
Channel ID o

Back

_images/ifttt_2.jpg
Notification Instance

IFTTT Trigger
IFTTT Key

Enabled

Previous

Rule

button_press

Delivery Channel

XHXOKHXXHXKXXKKXXKKXXKXXXKXXKKXXKKX

4

Done

_images/thingspeak_3.jpg
Channels - Apps~ Support

ThingSpeak

sinusoid

Channel ID: 556345
Author: markdianomic
Access: rivate

Test channel

PrivateView PublicView ChannelSettings Sharing

Write API Key

Koy PO TEANSRe

Read API Keys
ey eHSEEmSNINGD

Note

APl Keys

ommercial Use HowtoBuy b

Data Import / Export

Help

AP1keys enable you to write data to a channel orread data from a privte channel. AP
Keys ae auto-generated when you create a new channel,

API Keys Settings

» Write API Key: Use thiskey to write data o 2 channel. fyou feelyour key has
been compromised,cick Generate New Write API Key.

= Read API Keys: Use tis key toallow other people toview your private:
channel feeds and charts Click Generate New Read AP Key o generate an
additonal read key for the channel.

‘» Note: Use tis field to enter information about channel read keys. For example,
add notes t keep track of users with access to your chanel,

API Requests

Write a Channel Feed

GET https://api. thingspeak. con/update?api_key=Smmummmy
—icls

Read a Channel Feed

GET https://api. thingspeak. con/ channels/556345/ feeds. json?
ap.._key - NS o

Read a Channel Feld

GET https: //api. thingageak. con/ channels /556345 fields/1.1s.
cnTapi_ ey 1113

Read Channel Status Updates

GET https://api. thingspeak. con/ channels/556345/status. json
7api_k

Lear More

_images/ina219_1.jpg
)

Plugin & Service Name Review Configuration
Asset Name electrical

12C Address 6e

Voltage Range ava

Previous

Done

_images/threshold1.jpg
Expression

Enabled

or—0

Plugin Name

Previous

Review Configuration

speed > 10

_images/ina219.jpg

_images/threshold.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

Rule Delivery Channel

0.0
Single Iltem v
Average v

30

Done

_images/graph_icon.jpg

_images/gcp_registry.jpg
Soogle Cloud Platform | & foglamp

‘& IoT Core Registries

= Fitter registries)

O rRegistyo 4 Region Protacol Telemetry Pub/Sub topics

_images/systeminfo_1.jpg
D=0 (]

Plugin & Service Name Review Configuration Done

Asset Name Prefix system/

Previous

_images/sparkplug_1.jpg
o——O@

Plugin & Service Name

Asset Name
MQTT Host
MQTT Port
Username
Password

Topic

Previous

Review Configuration

matt
chariot.groov.com

1883

opto

SPBV1.0/0pto22/DDATA/groovEPIC workshop/Strategy

Next

Done

_images/gcp_01.jpg
o—0

Plugin & Name

Project ID

The GCP Region
Registry ID
Device ID

Key Name

JWT Algorithm

Data Source

Back

Review Configuration

fledge-demo
us-centrall v
fledge

demo
fledge_private
RS256 v

readings v

Done

_images/sqlite_storage_configuration.jpg
Advanced

» Scheduler
» Senvice Monitor
~ storage

» salite

Storage Plugin &

Purge Exclusions

Pool

No. Readings per database
No. databases to allocate in advance
Database allocation threshold

Database allocation size

_images/flir_setup.jpg
= $FLIR

CAMERA | seTTNgs | sTorAaGE | HELP.

LI SR L (] Sl A Load preset Save preset
527 Measurements & alarms a
1 =
P asc A
il =
g max 467°C @
min201°C A
avg:340°C A
B o R
ca o max:-°C | A
min:-C | A
avg a
] 382°C A
Colorize B
Palette Lava +

0 Log information

N @ #

_images/sqlite_config.png
Dashboard

Assets & Readings Aavanced
South

v Storage
North » sqlite

Notifications » Service Monitor

Control Dispatcher » Scheduler

Schedules
Certificate Store
Backup & Restore

Logs

Audit

Notifications

Storage Plugin &

Pool Size
No. Readings per database

No. databases to allocate in
advance

Database allocation
threshold

Database allocation size

Purge Exclusions

_images/gcp_03.jpg
Google Cloud Platform

New Project

Project name *
[fledge-demo

Project ID: fledge-demo. It cannot be changed later. EDIT

Organization

| dianomic.com

“This project will be attached to dianomic.com.

Location *

‘ B dianomic.com

BROWSE

Parent organization or folder

(CIT8 CANCEL

_images/sqlitememory_config.png
Dashboard
Reading Plugin @

Assets & Readings Advanced .
South

v Storage
North » salite Pool Size s
Notifications » sdlitelb
Control Dispatcher » sqlitememory

Configuration » Service Monitor

~ Qrhadilar

_images/gcp_02.jpg
Google Cloud Platform | B dianomic

Dashboard

@ Page notviewable for organizations. To view this page, select a project. SELECT PROJECT CREATE PROJECT

_images/sqlitelb_config.png
Lashboard

Assets & Readings Advanced v Storage Plugin &
South
v Storage
North Pool Size 5
» sqlite
Notifications » sdlitelb
Control Dispatcher » Service Monitor

Configuration » Scheduler

_images/gcp_create_device.jpg
Google Cloud Platform

w loT Core <& Create a device

B Registry details
Device D

o Devices Permanent dentifer for your device. 255 characters. Stat with letter. You canaiso

include numbers and the following characters: + % -_~

Gateways

@ Monitoring Device metadata (optional)

You can set custom metadata, such as manufacturer, location, etc. for the device. These
can be used to query devices in this registry. Leam more.

<+ ADD ATTRIBUTE

/ COMMUNICATION, STACKDRIVER LOGGING, AUTHENTICATION

_images/storage_02.jpg
Advanced v Storage configuration &

» Scheduler
Storage Plugin)
» Service Monitor 9¢ Plug salts
» Storage Readings Plugin
Database threads 1
Manage Storage O
Service Port 0
Management Port o

_images/gcp_add_registry.jpg
Google Cloud Platform

ﬂz loT Core & Create a registry

Define how devices in this registry will send data to Cloud IoT Core. After you create your
registry, you can start adding devices to it Learn more

Registry properties

Registry ID

Permanent identifier for your registry. 3-255 characters. Start with a etter. You can also
include numbers and the following characters: +. % - _~

Region -

Determines where data s stored for devices in this registry. Choice is permanent

Cloud Pub/Sub topics

Cloud loT Core routes device messages to Cloud Pub/Sub for aggregation. You can route
messages to different topics and subfolders in Cloud Pub/Sub based on the type of data
in the messages. Learn more.

Select a Cloud Pub/Sub topic:
None -

Device telemelry events will be published to this topic by default.

<+ ADD ADDITIONAL TOPIC

\/ SHOW ADVANCED OPTIONS

(LN CANCEL

_images/storage_01.jpg
Dashboard

Assets &Readings Installation &

South Advanced

North . General Maximum Update 1

Notifications » Utilities. Upgrade oninstall [
“ -

Schedules Pyze Available .

Certificate Store Packages Cache

Backup & Restore

Logs

_images/gcp_menu.jpg
= Google Cloud Platform

_images/storage_config.png
Lashboard

Assets & Readings Advanced
South

> Storage
North

» Service Monitor
Notifications » Scheduler

Control Dispatcher
Schedules
Certificate Store
Backup & Restore

Logs

Al

Storage configuration

Storage Plugin
Readings Plugin
Database threads

Manage Storage

Service Port

Management Port

salite

_images/gcp_devices.jpg
ol

Google Cloud Platform < d produ

loT Core Devices + CREATE A DEVICE @ DELETE

Registry details

Registry ID: flreg1
Devices us-centrall
Gateways. Devices are things that connect to the internet directly or through a gateway. Learn more
Monitoring Enter exact device ID
O deviceid Communication Last seen
o axs @ Allowed -
O coar @ Allowed -
O event @ Allowed -
O mak @ Allowed Jan 9,2020, 11:24:43 AM
O sine @ Allowed -
O sinusoid @ Allowed -
O sinusoidbla @ Allowed Jan9,2020, 8:31:34 PM
O sinusoidtest @ Allowed Jan7,2020, 5:13:40 AM
sinusoidtest1 @ Allowed Jan7,2020, 421:05 PM

Cloud loT Core documentation

Stackdriver Logging
Registry defaut
Registry default
Registry defaut
Registry default
Registry default
Registry defaut
Registry defaut
Registry defaut

Registry defaut

_images/storage_03.jpg
Advanced v Storage Plugin &

» Scheduler
Pool size 5
» Service Monitor
v Storage No. Readings per 15
+ sqlite database
No. databases to 3
allocate in
advance
Database ¥
allocation
threshold
Database]

allocation size

_images/fledge_all_round_solution.jpg

@4 o > @
méq%' aﬁa@aﬁa@a@
v

_images/south_advanced.jpg
e e R O R e e e R R G e e e e s R

lathe1004 South Service &

Configuration Advanced Configuration | Security Configuration

Maximum Reading Latency (mS) 5000
Maximum buffered Readings 100

Reading Rate 1

Throttle O
Reading Rate Per second v
Minimum Log Level warning v
Enabled
Applications
Service Info http://localhost:45437

®B ExportReadings Delete Service

_images/filter_9.jpg
Pl Server

®

Plugin Name

fft
FlirValidity 2 gata iter plugin

metadata

python27

Install from available plugins

Review Configuration

Name | Floor|

_images/slack_3.jpg
10:07 ¥ w T

= marke Q

Today

MarkDemo APP 9:59 AM
Pump 4 Coolant

ALERT for rulePump 4 CoolantNotification
has triggered

The temperature of the coolant in pump4
is above normal opersting levels

Jot something down

)

@ Aa 0z

_images/fledge_architecture.png
“#OPC UA §g
kafka

a NMQTT splunk>

Google Cloud

<
alSlE
JH

OE

»

HTTPS

North Service

;N N |
Orchestrator Event Service Storage Service Set Point
Config Mgmt. Control Service

SEMTE]

Updates

Monitoring

: [e]eXe}

Scheduling

—b User Mgmt.

Security

REST API

Microservice

I Plugins

Rest API

South Service FFT/RMS %’
| Image Class 2

Direct
OPC-UA
MQTT
HTTPS
CoAP

_images/metadata.jpg
o— 0

Plugin Name Review Configuration

Metadata to add

"floor": "Third",
"location": "AirIntake",

"unit": "Celsius",
"serialNo": "A73953-42492-3229"

2
3
4
5
6

Enabled o

_images/update_certificate.jpg
Upload Certificate

Key 2. Choosefile Nofile chosen
Certificate 2. Choosefile Nofile chosen
Overwrite

Overwrite allows to replace the existing key or certificate

_images/tshooting_pi_010.jpg
Help pages: PI Web API Help > System > Landing

"ProductTitle™: "PI Web API 2019 SP1",
"ProductVersion™: "1.13.0.6518",
"Links": {
"Self": "https://piserver 1/piwebapi/system”
"CacheInstances": "https://piserver 1/piwebapi/system/cacheinstances™,
"Configuration”: "https://piserver_ 1/piwebapi/system/configuration”,
"UserInfo": "https://piserver 1/piwebapi/system/userinfo”,
"Versions": "https://piserver l/piwebapi/system/versions”,
"Status™: "https://piserver 1/piwebapi/system/status”,
"InstanceConfiguration”: "https://piserver_ 1/piwebapi/system/instanceconfiguration”

_images/modbus_2.jpg
Control

Control Map

_images/usb_2.jpg
Asset Name

Connections

o—O (3]

Plugin & Service Name

Previous

Review Configuration Done
usba704
I {
2+ "analogue_example": {
3 "analogue”,
4 "AI0",
5 "valuel”,
6 "scale": 0.1
7 I
8+ "digital example": {
9 "digital",
10+ 1
11 "DI0",
12 “pI1",
12 anTon

_images/modbus_1.jpg
Asset Name
Protocol

Server Address

port

Device

Baud Rate

Number Of Data Bits
Number Of Stop Bits
Parity

slave ID

Register Map

Timeout
Control

Control Map

modbus
R v
900
e
v ¢
20 “values': |
3v «
4 temperature”,
B “slave: 1,
6 "assetName”: "Boothl’,
“register’: 0,
8 “scale™: 0.1,
9 “offset”s 0
10 b
1y
12
i
“values'

_images/usb_1.jpg

_images/mqtt_1.jpg
Notification Instance

MQTT Broker
MQTT Topic
Trigger Payload
Clear Payload

Enabled

Previous

Rule Delivery Channel

topijmatlocal 1883
Fledge
Triggered

Cleared

Done

_images/user_pulldown.jpg
& Fledge

@ foglamp-18/Fledge Demo Received: 16,817 Sent: 0 Uptime: 00:10:31 admin v

10 mi
® Log Out
. " s O shut Down
Readings received by Fledge Readings received
& Restart
20 20
15 0000000000000000000000000000000000 00000 15 0000000000000000000000000000000000 00000
10 10
5 5

Total since startup: 16,825 Total since startup: 16,825

© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/mqtt-sub.png
o—— 0

Plugin & Service Name

MQTT Broker host

MQTT Broker Port

Keep Alive Interval

Topic To Subscribe

Qos Level

Asset Name

Previous

Review Configuration

localhost

1883

Room1/conditions

matt-

Done

_images/user_management.jpg
. Fledge @ foglamp-18/Fledge Demo Received: 18,455 Sent: 0 Uptime: 00:37:46 admin v

Dashboard
Assets & Readings User Management Roles Add User &
South
North ID Username Role
™ 5
Notifications 1 admin admin super admin
active
Configuration
2 user user change role reset password delete

Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

r Managemel

Support

Settings © 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/north_map1.jpg
Control Map 1v [

2y "nodes”: [
3y {

4 "name": "test",

5 "type": "integer",

6 "destination” : "service'
i "asset" : "fan0213"

8 }

ol 1

10 |}

_images/view_graph.jpg

_images/north_advanced.jpg
OMF North Service 2

Configuration Advanced Configuration

Minimum Log Level

Data block size

Enabled

®B

Security Configuration

warning

100

Applications

Goncel E

Delete Service

_images/validity.jpg
AX8 South Service

o—0O

Plugin Name Review Configuration

Area Labels
"areas": [
",
"y,
"3,
"y,
s,
e,
"y,
g,
"y,
wign

Enabled

Previous

_images/north_map3.jpg
Control Map 1v |{

2v “"nodes”: [

3w 8

4 "EngineSpeed”,
5 "integer"

6 }

7 1

8 }

_images/view_spreadsheet.jpg
sensehat_gyroscope-readings

timestamp z x y

2020-05-04 14:30:49.145006 | 0.000762725 00010765493 00022465643
2020-05-04 14:30:48.145022 | 00010962286 | -0.0004502609 0.000719551
2020-05.04 14:30:47.145006 | 0.0007928684 | 0.0032151192 | -0.0011130839
2020-05-04 14:30:46.145008 | -0.0013448559 | 0.0047423765 00001088944
2020-05-04 14:30:45.145000 | -0.0004286431 | 0.0007723272 -0.0020291833
2020-05-04 14:30:44.144999 | -0.0001233947 | 0.0013834909 0.0007194807

e e e e | 1 0724997 | 00001437888 | 0 00041430R8

_images/north_map2.jpg
Control Map v [

2v "nodes”: [
3y %
4 "name": "EngineSpeed",

"type' integer",
"asset" : "pump0014"

_images/view_hide.jpg
sensehat/gyroscope

1 minute v Graph Summary

0.004

0.003

0.002

0.001

-0.001

-0.002

-0.003
14:29.07 142912 14:29:17 142022 14:2927 14:29:32 142937 14:20:42 162947 142052 14

_images/north_map4.jpg
Control Map 1v [

2v "nodes": [

3v {

4 "EngineSpeed",

5 nteger",

6 "script" : "SetPumpSpeed"
7 }

8 1

9 }

_images/threshold2.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

Rule Delivery Channel

0.0
Single Iltem v
Average v

30

Done

_images/log_1.jpg
o— 0

Plugin Name Review Configuration

Asset filter

Enabled

Previous

_images/tshooting_pi_002.jpg
https://piserver_1 is requesting your usemame and password
The site says: "P| Web API"

User Name:

Password: | eeeeeseese

- cance

_images/lathe.jpg
Lathel South Service

Lathe Name lathe.

Spin up time s

Cutting time s

Idle time s

Spin down time 6

RPM 500

Current 750

Show Advanced Config

Enabled

Applications ©

cancel -

_images/tshooting_pi_001.jpg
Help pages: PI Web API Help > Home > Get

{
"Links"
"Self": "https://piserver 1/piwebapi/",
"AssetServers": "https://piserver 1/piwebapi/assetservers”,
" “: “hitpe://piserver 1/piwehapi/dataservers”,
C'omf": "https://piserver 1/piwebapi/omf"™, >
o T ttpsST//pPIsServer_1/pt Ttch"”,
"System": "https://piserver 1/piwebapi/system"
}

}

_images/login_dashboard.jpg
& Fledge

@ foglamp-18/Fledge Demo Received: 16,535 Sent: 0 Uptime: 00:05:46 admin v
10 minutes v Select Graphs v
Readings received by Fledge Readings received from asset sinusoid

Total since startup: 16,528 Total since startup: 16,528

© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/tshooting_pi_004.jpg
Help pages: PI Web API Help > Home > Get

{
"Links": {

"Self": "https://piserver 1/piwebapi/”,

"AssetServers™: "hittps://pi ruer 1/piwehapi/a tservers",
"DataServers": "https://plserveril/plwebapl/dataservizilz>
TOME Tt tpST77PLServer 17/ piwebapt7 omt

"Search™: "https://piserver 1/piwsbapi/search”,

"System": "https://piserver 1/piwebapi/system”

}

_images/login.jpg
. Fledge @ foglamp-18/Fledge Demo Received: 16,449 Sent: 0 Uptime: 00:04:22

Login with Certificate . Forgot Password?
Setup Instance

© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/tshooting_pi_003.png
Dashboard
Assets & Readings

South

Notifications

Configuration

North Instances

Process

North Readings

» Pl

Status

disabled

Plugin

OMF

Version

190

Sent

_images/logview_11.png
Dashboard

Assets & Readings
South

North
Notifications
Control Dispatcher
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
Tasks

Support

Settings

Help

System Logs
Service

Simple

Jul 7 17:06:48 foglamp-18
Jul 7 17:06:38 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
exists

Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:18 foglamp-18
Jul 7 17:06:03 foglamp-18
Jul 7 17:05:48 foglamp-18
Jul 7 17:05:44 foglamp-18
Jul 7 17:05:43 foglamp-18
Jul 7 17:05:43 foglamp-18
Jul 7 17:05:31 foglamp-18
Jul 7 17:05:30 foglamp-18
Jul 7 17:05:25 foglamp-18
Jul 7 17:05:20 foglamp-18
Jul 7 17:05:19 foglamp-18
Jul 7 17:05:18 foglamp-18
Jul 7 17:05:17 foglamp-18

FogLanp
FogLanp
FogLanp
FogLanp
FogLanp

FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp

Severity

simple[22518]:
simple[22518]:
simple[22518]:
simple[22518]:
simple[22518]:

simple[22518]:
simple[22518]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:

Info and above

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

Search

The supplied Python script does not define a valid "convert” function

The supplied Python script does not define a valid "convert” function

Auto Refresh

Service is not registered with the core - not registering configuration interest

Failed to register service Simple

HTTP error during service registration: 400: A Service with the same name already

Python error in script: in delete message#012 at line 2

Failed to import script simple script_syntax

The
The
The
The

supplied
supplied
supplied
supplied

Python error

Python
Python
Python
Python

seript
seript
seript

seript

does
does
does

does

not
not
not

not

define
define
define

define

a

a

a

a

valid "convert"
valid "convert"
valid "convert"

valid "convert"

in script: in delete message#012 at line 2

Failed to import script simple script_syntax

The
The
The
The
The
The
The

supplied
supplied
supplied
supplied
supplied
supplied
supplied

Python
Python
Python
Python
Python
Python
Python

seript
seript
seript
seript
seript
seript

seript

does
does
does
does
does
does

does

not
not
not
not
not
not

not

define
define
define
define
define
define

define

a

a

a

valid "convert"

valid "convert"
valid "convert"
valid "convert"
valid "convert"
valid "convert"

valid "convert"

function
function
function

function

function
function
function
function
function
function

function

_images/tshooting_pi_006.jpg
Help pagest EE e ATt Halp > Gataservec > Setpoises
f

e,
i v
Pt e ot
Sintepeistedoa T
iy i

V) TIOEATk AL AL
T

Tanart ETI0OTTITIONNNG Inesmicsment saset 3.

_images/logview_1.png
Dashboard

Assets & Readings
South

North
Notifications
Control Dispatcher
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
Tasks

Support

Settings

Help

System Logs
Service

Simple

Jul 7 17:06:48 foglamp-18
Jul 7 17:06:38 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
exists

Jul 7 17:06:37 foglamp-18
Jul 7 17:06:37 foglamp-18
Jul 7 17:06:18 foglamp-18
Jul 7 17:06:03 foglamp-18
Jul 7 17:05:48 foglamp-18
Jul 7 17:05:44 foglamp-18
Jul 7 17:05:43 foglamp-18
Jul 7 17:05:43 foglamp-18
Jul 7 17:05:31 foglamp-18
Jul 7 17:05:30 foglamp-18
Jul 7 17:05:25 foglamp-18
Jul 7 17:05:20 foglamp-18
Jul 7 17:05:19 foglamp-18
Jul 7 17:05:18 foglamp-18
Jul 7 17:05:17 foglamp-18

FogLanp
FogLanp
FogLanp
FogLanp
FogLanp

FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp
FogLanp

Severity

simple[22518]:
simple[22518]:
simple[22518]:
simple[22518]:
simple[22518]:

simple[22518]:
simple[22518]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[22140]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:
simple[21369]:

Info and above

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

Search

The supplied Python script does not define a valid "convert” function

The supplied Python script does not define a valid "convert” function

Auto Refresh

Service is not registered with the core - not registering configuration interest

Failed to register service Simple

HTTP error during service registration: 400: A Service with the same name already

Python error in script: in delete message#012 at line 2

Failed to import script simple script_syntax

The
The
The
The

supplied
supplied
supplied
supplied

Python error

Python
Python
Python
Python

seript
seript
seript

seript

does
does
does

does

not
not
not

not

define
define
define

define

a

a

a

a

valid "convert"
valid "convert"
valid "convert"

valid "convert"

in script: in delete message#012 at line 2

Failed to import script simple script_syntax

The
The
The
The
The
The
The

supplied
supplied
supplied
supplied
supplied
supplied
supplied

Python
Python
Python
Python
Python
Python
Python

seript
seript
seript
seript
seript
seript

seript

does
does
does
does
does
does

does

not
not
not
not
not
not

not

define
define
define
define
define
define

define

a

a

a

valid "convert"

valid "convert"
valid "convert"
valid "convert"
valid "convert"
valid "convert"

valid "convert"

function
function
function

function

function
function
function
function
function
function

function

_images/tshooting_pi_005.jpg
Help pages: PI Weh API Felp > DataServer > List

Links
"Items

i

ebTd": "F1DSqEe26YHaZkewt | KUNAXLEWVOLOLTMYM BNVTFTHOVY"

0" "e9b647a8-da8 -4 Tda-b052-32945£85CHTE",
IN-3220MU1S05E",

ath": "\\\\PIServers[VIN-3228MU18058]",

sConnected": fal

verVersion”s ™,

ervecTine™s null,

Rt _)
e Tt e e e v e
e - e PTG enum ationsats
)

3
1
)

_images/logview_21.png

_images/tshooting_pi_008.jpg
Holp pages: FI ush APT Hslg > Asce:

«
ks 1),
it

h
wabrar
“Lis wiatcoced.s

LRSSy D ELEBRFGVOLOLTIN) NIVEFTHDVS”
74564 asaz-1904REbOINLE",

3161134571 31.09031502",

[
5 5337 T 7 P VI) S 354l Sy
i 7}% st gucentacte
ehttaa://pIseCust |/ Eivsagi/vesstoe e o ST i oL (icxtionplusine
7y et eeve /b Fineyiti i, sscicityidmneisioet,
= e e > s i [g
et st et 1/l unops/aace Cioevees VURSY;bA i .5 T —
“hnalyesshulabLug oot PhEEpet gL shreee /iRt st es e e P i eijselplugions
“rimeRlerluging®s "htipai/ pisarver {/Guetaptse s rvace/FIH T AL T T
“aaturity et B et ELTaEL tsseksatuets FIREYOS kgt LAY et
A et D bkt i S

HAIATS "FIRSUSFEYRSVECNL0IN2_SKAUELTRYIVRVIONY
“Li “ETebeob ST34 d0bo- a166-BIORTELBNI",
lana"s “pissever 17,
Desceipeionts
P M\ Wpisekvee 17,
“Eaconnactad®s £ai
“Serveriacaions v,
“Servertine" mull,
IBrtendedbropertaess (),
“Linksts |

elen

VBChEeth2 kAVEITRVIVRYIENG",

Mtpe://piserver 1/plushaps /sosstsecvers/Finsus

“Databssss™ PRLELSTTTEEEIVer 1/ vLb st e e e vare/ P ITCLs oy REVER SIS SAVEITRY RV asss st sbases”,
Jissitscrve co VIS eFIRVECKINDIA SHUEITRVINATS

notscicaticncontact

iatasn,

MotiFicatssocontas TampIates™s “hetpst/ piseriar 1/EIU:
TNotificationbluglngs “hitps:)/pisscver 1/procbapt assstasrrers PIFSussH
“Securityldsneatiesn; "hitpes/

TSecuri tykapings*™: “heiy

7elShy sUEITRVVEY

notiFicsionpTugine",
Secuctndntities”,

PSR
Analysonule1usThs"s ThEESS: /ot st rver 1/ Eiuskipt / sssetssrve o /FIRSUSSFIyRSVETRI 00N SENIETTRURTIMNG dnatisisculoplugina”

“TinahslaFloglnets “hepet ToSetver | oTu sps ot toncrece TR il TSR LRI TR NV NS et s
SeCurity"s “hicps://pisstrer 1/piushaps/ sssstostvero/FIRSueEE T5tho SEAVEITRYNEVORG sscuri ey
PR A v e it i DO O

’

s

_images/logview_2.png

_images/tshooting_pi_007.jpg
Help pages: PI Web API Help > Home > Get

{
"Links": {
"Self": “"https://piserver 1/piwebapi

@Servers": "https://piserver _l/piwebapi/assetservers, >

"Dataservers"T “HTTpS://PiSerVer 1/ piwebapl/dataservers ,
"OmE": "https://piserver 1/piwebapi/omE”,
"Search™: "https://piserver 1/piwebapi/search™,

"System": "https://piserver 1/piwebapi/system”
}

_images/max31865_3wire.jpg
“‘Jl ’_ l"" - .,,

)um *aua Hsku!u "’5 el
(AR RN

L\‘ "GND CLK SDI ROY .

_images/manual_purge.jpg
Dashboard

South

North
Notifications

Control Dispatcher

Asset
PREsine2.sinusoid

sinusoid2

Readings
82210 1=
6308 L2

&
&

a®

_images/tshooting_pi_009.jpg
i {
Y T T OB T VGTTON
T ot peationts
HaRpionty R stera’for contiguration data.”,

S R At oy

ettt et ity
SERA v g e

inerat b et in e Pt g Syt
i e A i
e 0

i
vty risorae azvornyivneo. o o,
PRttty R
S ;i.

B
e s e e A =
Lz i i
e P i e
s 5 fieeon
ETR I it it £
e = B

[Eemeal e 2

_images/kafka.jpg
o—@

Plugin & Name

Bootstrap Brokers
Kafka Topic
Send JSON

Data Source

Back

Review Configuration

localhost:9092 kafka local:9092
Fledge
Strings v

readings v

Done

_images/dht11_11.jpg
L

Plugin & Service Name Review Configuration
Asset Name dht11
Rpi Pin 7

Previous

Done

_images/rate_1.jpg
Ly €)

Plugin Name Review Configuration
Trigger expression crest> 14

Terminate on Expression v

End Expression

Full rate time (mS) o

Pre-trigger time (mS) 1

Reduced collection rate 1

Rate Units per minute v
Exclusions i
2 "exclusions": ["speed"]
3}
Enabled [

Previous

_images/random_2.jpg
randomwalk

10 minutes v Graph Summary

I endomwalk

100

9%

%0

85

80

75

70
00:26:42 09:27:12 09:27:42 00:28:12 09:28:42 09:29:12 00:29:42 00:30:12 09:30:42 09:31:12 00:31:42 09:32:12 09:32:42 09:33:12 00:33:42 09:34:12 09:34:42 00:36:12 00:95:42 09:36:12

_images/dnp3.jpg
o——0O

Plugin & Service Name Review Configuration
Asset Name prefix dnp3_
Master link Id 1
Outstation address 127.0.01
Outstation port 20000
Outstation link Id 10
Data scan [
Scan interval 30
Network timeout 5

Previous

Done

_images/rate_3.jpg
Reduced collection rate 1

Rate Units

per hour
Exclusions peridey)

per second J

_images/dispatcher-config.jpg
Dashboard

Assets & Readings
South

North

Notifications

Schedules

Certificate Store

Dispatcher 2

» DispatcherAdvanced

Dispatcher advanced config params &

Minimum Log Level

Maximun number of
dispatcher threads

debug

_images/rate_2.jpg
Terminate on

_images/edge_control_path.jpg
Storage Notification
g Service

_images/replace.jpg
oO———0O

Plugin Name Review Configuration

Replace i
with

Enabled [m]

_images/download_icon.jpg

_images/rename.png
o— 0

Plugin Name Review Configuration
Operation et v

Find sssethame

Replace With newssethame

Enabled o

_images/deprecated_2.png
sinusoid

192

& sine2

& sine250

734

196

_images/python35_11.jpg
o— 0

Plugin Name Review Configuration
Python script 1 [# generate exponential moving average
2
3 import json
5 # exponential moving average rate default value: include 7%
of current value
6 rate = 0.07
7 # latest ema value
8 latest = None
9
10 # get configuration if provided.
11 # set this JSON string in configuration:
12 # {"rate":0.07)
emapy

Choose Files | No file chosen

Configuration 1 [{"rate” : 0.75)

Enabled

5]

_images/deprecated_1.png
sinusoid

192

sine2

sine250

734

77

_images/python35_1.jpg
o— 0

Plugin Name Review Configuration
Python script 1 [# generate exponential moving average
2
3 import json
5 # exponential moving average rate default value: include 7%
of current value
6 rate = 0.07
7 # latest ema value
8 latest = None
9
10 # get configuration if provided.
11 # set this JSON string in configuration:
12 # {"rate":0.07)
emapy

Choose Files | No file chosen

Configuration 1 [{"rate” : 0.75)

Enabled

5]

_images/dht11.jpg

_images/random_1.jpg
o——M 0@ (=]

Plugin & Service Name Review Configuration Done

Asset Name Random

Previous

_images/developer_features.jpg
Dashboard

Assets & Readings
South

North
Notifications
Control Dispatcher
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages

System

Tasks

Connection Setup

http v

GUI Settings

Ping/Auto Refresh Interval

Every 5 Seconds

Refresh Dashboard Graph

Every 5 Seconds

Developer Features.

Host

foglamp-18.local

Port

8081

Connected to ht

081/fledge version 1.9.2.

Timestamps.

Browser timezone v

Editor Theme

Light .

Readings Graph Alpha Control

O

_images/python_1.jpg
o © o

Notification Instance Rule Delivery Channel Done

Python script from time import sleep

from envirophat import leds

def flash_leds(message):

for count in range(4):
leds.on()
sleep(0.5)
leds.off()
sleep(0.5)

flash Jeds.py

Choose Files [flash_leds.py

Con

uration 1o

Enabled [E]

Previous

_images/dht11_1.jpg
I

Plugin & Service Name Review Configuration
Asset Name dht11
GPIO Pin a

Previous

Done

_images/dht111.jpg

_images/random_11.jpg
B

Plugin & Service Name Review Configuration
Asset name randomwalk
Minimum Value 10
Maximum Value 100

Previous

Done

_images/pt100_3wire.jpg

_images/delta.jpg
Plugin Name

Tolerance %

Minimum Rate

Minimum Rate Units

Individual Tolerances

Enabled

o— 0

Previous

persecond v

1{}

Review Configuration

_images/purge_01.jpg
Utilities v Purge the readings, log, statistics history table &

v Purge
Age Of Data To Be 1

» Purge System
S Retained (In Hours)

Max rows of data to retain 1000000
Retain Unsent Data purge unsent
Retain Stats History Data 30

(In Days)

Retain Audit Trail Data (In 60

Days)

Save

_images/delete_user.jpg
Delete User

Are you sure, you want to delete the user mark?

_images/pt100_4wire.jpg

_images/delta_2.jpg
o—————©0 (3] (4]

Notification Instance Rule Delivery Channel Done

Asset

JSON Configuration 1v |{

"datapoint_name": "alias_name",
"sinusoid": "cosinus”

Previous

_images/purge_03.jpg
Utilities - Configuration of the Purge System &

» Purge
Statistics Retention 7
v Purge System
Audit Retention 30
Task Retention 30

Save

_images/delta_1.jpg
0——O © (4]

Notification Instance Rule Delivery Channel Done
Rule Plugi
S Average
Delta
OutofBound

Simple-Expression

available plugins

Previous

_images/purge_02.jpg
Retain Unsent Data ougeursen)

retain unsent to any destination
Retain Stats History Data retain unsent to all destinations

(In Days)

_images/playback_01.jpg
o— 0

Plugin & Service Name

Asset Name

CSV file name with extension

Header Row

Header columns.

Cherry pick column with same/new name

Historic timestamps
Pick timestamp delta from file
Timestamp column name
Timestamp format

Ingest mode

Sample Rate

Burst Interval (ms)

Burst size

Read file in a loop.

Previous

Review Configuration

sample

e KM 1

100

1000

Done

_images/pipelines.png
No Code

Bl 0=

OPC-UA Data Map }9(5%
S7

Add Metadata

@ -

Rest API FLIR }G%
57

Add Metadata 6%
57

Calculate Min, Max

Accelerometer <—> Vibration Plugin }9 5% RMS 5%
S7 S7
LoRa galeway}%(—) LoRa MQTT >> 5% Add Metadata

5 South Plugin
D Filter
O Rule
O Event
D North Plugin

Rules,

Machine Learning

Ticket App,

Email Slack

B

Storage

@

@

Compress }9659\} Plugin O
Any Algorithm }@«ka Plugin

Condition forward

@

Calculate Delta

}é@s&nﬁzn Plugin

_images/profile.jpg
& Fledge

@ foglamp-18/Fledge Demo Received: 16,832 Sent: 0 Uptime: 00:10:46

Profile

Username

admin

Role

admin

change password

© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

admin v

_images/postgres_config.png
Lashboard

Assets & Readings Advanced
South

v Storage
North v postgres
Notifications » Service Monitor
Control Dispatcher » Scheduler

Configuration

Storage Plugin

Pool Size

_images/pt100_1.jpg
o— (0

Plugin & Service Name Review Configuration
Asset Name Prefix PT100/
GPIO Pin 8

Previous

Done

_images/pt100.jpg

_images/filter_2.jpg
Sine South Service

®

Plugin Name Review Configuration

Plugin

Apply an expression to the data stream

expression

Install from available plugins

Name

Back

_images/sine_out_change.jpg
Graph Summary

[T

_images/sine_out5.jpg
10 minutes. v Graph Summary

20

15

10

5
110416 11:04:46 110516 11:05:46 11:06:16 11:06:46 11:07:16 11:07:46 11:08:16 110846 11:09:16 11:0046 11:10:16 1110146 111116 11:11:46 11:12:16 11

_images/filter_4.jpg
sinusoid

5 minutes Graph Summary

I sinusoid N LogSine

11:17:44 101814 111844 111914 11:19:44 112014 11:2044 112114 112144 112214 11:22:44

_images/sinusoid_advanced.jpg
Sine South Service

Asset name sinusoid
Hide Advanced Config
Maximum Reading Latency 5000
(mS)
Maximum buffered Readings 100
Reading Rate ‘ 10/ <
Throttle
Reading Rate Per second ¥
Minimum Log Level warning v
Enabled v

Applications @

Cancel

_images/filter_3.jpg
Sine South Service

o— 0

Plugin Name Review Configuration

Datapoint Name LogSine

Expression to apply log(sinusoid)

Enabled

Previous

_images/sinusoid.jpg
. 2) e

Plugin & Service Name Review Configuration Done

Asset name sinusoid

Previous

_images/filter_6.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

= Location

= MyExpression

Service Info http://localhost:37799

Export Readings Delete Service

_images/slack.jpg
Today New

MarkDemo A% 11:31 AM
Above0.5

ALERT for ruleAbove0.5Notification has triggered
The value of the sinusoid is greater than 0.5

Jot something down

| B I &

_images/filter_5.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

= MyExpression

= Location

Service Info http://localhost:37799

Export Readings Delete Service

_images/sinusoid_output.jpg
sinusoid

10 minutes Summary

I sinusoid

-1.0
09:49:23 09:49:53 09:50:23 09:50:53 09:51:23 09:51:53 09:52:23 09:52:53 09:53:23 09:53:53 09:54:23 09:54:53 09:55:23 09:55:53 09:56:23 Of

_images/filter_8.jpg
Pl Server

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client_id

OCS Client Secret

Show Advanced Config
Enabled

Exclusive

Interval 00:00:30

Applications @

Delete Instance

_images/slack_2.jpg
Today

MarkDemo 4% 9:59 AM
Pump 4 Coolant

ALERT for rulePump 4 CoolantNotification has triggered

The temperature of the coolant in pump is above normal opersting
levels

Jot something down

g B I & @ &

_images/filter_7.jpg
Sine South Service

Enabiea

Applications @

= Location

Metadata to add

"location": "London"

Enabled

= MyExpression

_images/slack_01.jpg
Notification Instance

Slack Webhook URL
Message Text

Enabled

Previous

Rule Delivery Channel

https:/hooks.slack com/services/T2GBZ52AF/BGFNTP7NG/YJxQuiJda5ZHMirFZqUjUc6z

Done

The temperature o the coolant in pumpd is above normal operating levels|

_images/fft_2.jpg
Result Data
peak

Frequency Bands =0
ms

= spectrum
Band Prefix e

_images/setpoint_3.jpg
o (2] 2] o

Notification Instance Rule Delivery Channel Done
service Wotarran
Trigger Value |
20 values': (
5 e U1,
4 1200
s)
s b
Cleared Value N
20 “values': (
Tun": "0
)
¥
Enabled

Previous

_images/fft_1.jpg
Waveform South Service

o— 0

Plugin Name Review Configuration
Asset to analysis wave

Result Data

Frequency Bands 10

Band Prefix Band

No. of samples per FFT 8194

Low Frequency Reject % 0

High Frequency Reject % 0

Enabled

Previous

_images/setpoint_2.jpg
o——o o o

Notification Instance Rule Delivery Channel Done
Assetname MotorTempeature

Datapoint name temperature

Condition >~

Trigger value 00

Evaluation data Singi tam

Window evaluation erage v

Time window 2

Previous

_images/filter_10.jpg
Pl Server

o—0O

Plugin Name

Metadata to add

Enabled

Previous

1
2

{

}

"floor": "1"

Review Configuration

_images/filter_1.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

Service Info

Export Readings Delete Service

_images/sine_in.jpg
10 minutes v ‘ Graph | Summary.

I sinusoid I sine10

15 -

10

5
110431 11:0501 110531 11:0601 110631 110701 110731 110801 11:0831 110901 11:09:31 111001 11:10:31 111101 111131 119201 111231 11

_images/scheduler_advanced.jpg
Dashboard
Scheduler configuration &

Assets & Readings Advanced 2
South
> Storage
North + Service Monitor Max Running Tasks 50
Notifications » Scheduler Max Age Of Task (In days) 30

Control Dispatcher

Configurati

_images/eraser.jpg

_images/sensehat_1.jpg
-

Plugin & Service Name Review Configuration

Asset Name Prefix

Pressure Sensor

Pressure Sensor Name
Temperature Sensor
Temperature Sensor Name
Humidity Sensor

Humidity Sensor Name
Gyroscope Sensor
Gyroscope Sensor Name
Accelerometer Sensor
Accelerometer Sensor Name
Magnetometer Sensor
Magnetometer Sensor Name
Joystick Sensor

Joystick Sensor Name

sensehat/

pressure

temperature

humidity

gyroscope

accelerometer

magnetometer

ioystick

Previous

Done

_images/envirophat_2.jpg
o— (0

Plugin & Service Name

Asset Name Prefix

RGB Sensor

RGB Sensor Name
Magnetometer Sensor
Magnetometer Sensor Name
Accelerometer Sensor
Accelerometer Sensor Name
Weather Sensor

Weather Sensor Name

Previous

Review Configuration

magnetometer
@

accelerometer
@

weather

Done

_images/sensehat.jpg

_images/expression_1.jpg
o——0O

Notification Instance Rule Delivery Channel Done

[TIT Simple EXpression

Threshold

Generate a notification based on the evaluation of a user provided expression

_images/setpoint_1.jpg
Control Map Iean

2v values”
30

8 “name’
9 “registe:
10)

_images/expression.jpg
L €)

Plugin Name Review Configuration
Datapoint Name calculated
Expression to apply log(x)
Enabled)

Previous

_images/service_monitor.jpg
Dashboard

Assets & Readings Advanced
South

> Storage
North

» Service Monitor
Notifications » Scheduler

Control Dispatcher

Schedules

Certificate Store
Backup & Restore

Logs

Service Monitor &

Health Check Interval (In
seconds)

Ping Timeout

Max Attempts To Check
Heartbeat

Restart Failed

_images/expression_2.jpg
Notification Instance Rule

(3]

Delivery Channel

Done

Asset name

Expression to apply

Previous

_images/setpoint_12.jpg
Notification Instance

Service

Trigger Value

Cleared Value

Enabled

Rule

"values": {

"value"

Delivery Channel

Done

_images/expression_11.jpg
o———0O

Plugin & Service Name

Asset Name
Expression
Minimum Value
Maximum Value

Step Value

Previous

Review Configuration

Expression
clamp(-1.0,sin(2 * pi * x) + cos(x / 2* pi),+1.0)

-5

0.001

Next

Done

_images/setpoint_11.jpg
Notification Instance

Service

Trigger Value

Cleared Value

Enabled

Rule

"values": {

"value"

Delivery Channel

Done

_images/empty_notifications.jpg
& Fledge @ foglamp-18/Fledge Demo Received: 56,495 Sent:0 Uptime: 00:00:27 o e

Dashboard

Assets & Readings Notifications & Create Notification Instance + ¢

South

North
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings
© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/rms_1.jpg
Waveform South Service

o —0

Plugin Name Review Configuration

Sample size 10
RMS Asset name %a RMS
Include Peak Values
Include Crest Values
Include Raw Data

Asset filter .

Enabled 0

Previous

_images/email_1.jpg
Notification Instance

To address
To

Subject

From address
From name
SMTP Server
SMTP Port
SSL/TLS
Username
Password

Enabled

Rule Delivery Channel

alert subscriber@dianomic.com
Notification alert subscriber
Fledge alert notfication
dianomic alerts@gmal.com

Notification alert

Done

smtp.gmail com

587

dianomic.alerts@gmail.com

pass

Previous

_images/reset_password.jpg
Update User Password

Username

user

_images/enable_notify_service.jpg
Notification Service

Name MyNotificationService

Enabled

Cancel

_images/scaleset_1.jpg
o—0

Plugin Name Review Configuration
Scale factors - |
2v "factors": [
£ €
4 "asset": ".*",
5 "datapoint”: ".*",
6 "scale’: 1,
7 "offset": 0
8 ¥
9 1
10)
Enabled o

Previous

_images/enable_https.jpg
Fledge Admin and User REST API

Enable HTTP (=]}
HTTP Port 8081
HTTPS Port 1995

Certificate Name fledge

o
e

_images/scale.jpg
Sine South Service

o—0O

Plugin Name Review Configuration

Scale Factor

Constant Offset

Asset filter

Enabled

Previous

_images/envirophat_1.jpg

_images/watchdog_2.jpg
Notification Instance

Asset name

Evaluation interval in ms

Previous

Rule

Delivery Channel

Done

sinusoid

5000

_images/watchdog_1.jpg
o—————0

Notification Instance Rule Delivery Channel Done

Rule Plugi
His FISSHa OutOfBound

Simple-Expression
Generate a notification based on the last time of received data

Threshold

WatchDog

available plugins

Previous

_static/minus.png

_static/file.png

_static/plus.png

_images/ACL_1.jpg
Dashboard
Asssic i eatines Scripts ACLs Add + @
South SRR

North

Notifications

Control Dispatcher

Configuration

Schedules

Certificate Store

_images/ACL_2.jpg
ACLs | Add

Name Nan
Services
Names | Selectservie name
Types | select service type
URLs
URL URL
AcLs Select service type

+ Add new URL

cancel

_images/ACL_5.jpg
Services

URLs

Names

Types

URL

AcLs

x| HTTR x
sine

Press001

Press002

Press003

Northbound

HTTP

Press001

_images/ACL_6.jpg
Services

URLs

Names

Types

URL

AcLs

+ Add new URL

x| HTTP x| Pressool

fsele

Core

ervice type

Storage
Southbound
Northbound
Notifications

Management

_images/ACL_3.jpg
Services

Names Kelect service name
Core
Types
Fledge Core
Southbound
URLs :
i Sine
Press001
AcLs
Press002

+ Add new URL

_images/ACL_4.jpg
Services

Names

Types

x| TR,

[sammmeuee

_images/ACL_7.jpg
ACLs | Add

Name AlNorth
Services
Names Select service name >
Types Belect service type -
Core
URLE Storage m
HAL: Southbound
AcLs Northbound
Notifications

+ Addnew URL | Management

cancel

_images/view_times.jpg
sensehat/gyroscope

1 minute v

1 minute
5 minutes
10 minutes
30 minutes
1 hour

8 hour

1day

_images/view_summary.jpg
sensehat/gyroscope

1 minute R

_images/ACL_8.jpg
Scripts ACLs Add + @

Name Usage

All North

_images/ACL_9.jpg
ACLs | All North

Name

Services

URLs

Usage

u

Al

N

Il North

Names

Types

URL

AcLs

+ Add new URL

x| Northbound

Ifledgefoperation

Sele

ervice type

Caneel

_images/EndToEnd.jpg
/

= — 8 — &R
\

_images/OMF_Persisted.png
OMF North Service 2

Configuration Advanced Configuration Security Configuration

OMF v
{
"sentDataTypes”: [
{
"sine25": {
"type-id": 1,
"dataTypesShort”: "0x101",
"hintChecksun": "0x0",
"namingScheme": 0,
"afhHash": "15489826335467873671",
"afHierarchy”: "fledge/data_piwebapi/mark",
"afHierarchyOrig": "fledge/data_piwebapi/mark",
"dataTypes": {
"sinusoid”: {
"type": "number”,
"format": "float64"
}
}
Y
Yo
{
"sinusoid": {

"type-id": 1,
"dataTypesShort”: "0x101",
"hintChecksun": "0x0",
"namingScheme": 0,
"afhHash": "15489826335467873671",
"afHierarchy”: "fledge/data_piwebapi/mark",
"afHierarchyOrig": "fledge/data_piwebapi/mark",
"dataTypes": {

N . g

Developer

_images/AX8.jpg

_images/AX8_1.jpg
o———0O

Plugin & Service Name

Asset Name

Server Address

Port

Slave ID

Review Configuration

AX8

Done

192.168.0.48

502

Previous

_images/PI_connect1.jpg
%5 192.168.2:101 - Remote Desktop Connection

i X
\ lol@] =
/@ PIData Collection Manager X \\ [all=lEl =
<« C | @ Secure | https://win-4m7odkbOrh2: 546 1/Li/tasks/Omfapp/6 2354cBf-4ae 1-4423-9¢2d-004197f7cb30 Q#%| 0 0 &

fops (@ PrDataColection i @ PV

Pl Data Collection Manager -3

Components Routing ~ foglamplab OMF Details

Fiter Co... Y Data Sources Connectors i Relays @ Destinations @ Configuration Diagnostics

Data Sources - °| Status =
Connectors > B @ o @ WD || @ rtng conurson Ho Roters

= Not Registered
~ foglamplab foglarmp -—
@ Add Relay Distinvation No relays are connected to this connector. To select one

. o mord relays to 5ceive dats from this conneciar click
Relays Configine Fouting

@ WIN-4M7ODKBORH2

Destinations ~ Configure Routing

WIN- Pl
© WoDKEDRHD Server

Narme.

foglarmpiab

~| OMF App Type

Configuration Tasks for foglamplab [STSITIEEEO N <o Configuration || L0

Configure Routing Configure Data Desciption

v Select or Add a Relay. ' Set up Destination Data Settings (requires Relay and foglarmp iab test
Destination)

Access Token Expiration

Doss not expite

P B e

e B 5 @ 95 0RE @

_images/PI_connectors.jpg
%) 192.168.2.101 - Remote Desktop Connection

T,
/@ P1Data Collection Manager X \\
v/)

s X
ES =T

<« C | @ Secure | hitps://win-4m7odkbOrh2:546 1/ui/config

Relays

n Manager

@ Destinations @

Bops (@ PLData Colectionon. @ P1ison
Components Routing

Fiter Co.._ Y Data Sources Connectors |
[y — . Add an OMF Application
Connectors -

Relays o

/A WIN-4M7ODKBORH2
Destinations B

@ WIN-4M7ODKBORH2 P Server

Eistart,

A WINAM7OD.

@ Win-am70D.

LB >eJ S 0RE N

& Edit Routing Configuration

-

aQax/o 0

Overview

Use this application to set up, maintain, and manage
your PI Cannectar data flow

The Components list shows the data sources,
connectors, relays, and destinations set up in your data
flow

The Routing area shows how the Components are
connected to each other to get data from data sources to
destinations

This pane shows contextual information about the iterms

you select. To clear your selection and see this overview,
click in any open area

Less

Tasks

) Add a connector

Navigate to the connector app to initialize 2
connection. Click here to access the connection
string

/A WINAM7ODKBORK2: No Connectors
Route connectors to this relay.

o743

[% oy

_images/OMF_tabs.png
TGRS

OMF North Service 2

Configuration Advanced Configuration Security Configuration Developer

Endpoint Pl Web API .

Send full structure

Naming Scheme Concise v
Server hostname 54.160.93.60

Server port, O=use the default o

Producer Token omf_north_0001

Data Source readings v

Static Data

Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format int4

Number Format float6a

Compression [u}

Default Asset Framework Location [ledge/data_pivebapi/mark

Asset Framework hierarchy rules L

_images/PI_connect.jpg
%5 192.168.2:101 - Remote Desktop Connection

i X
\ lol@] =
/@ PIData Collection Manager X \\ [all=lEl =
<« C | @ Secure | https://win-4m7odkbOrh2: 546 1/Li/tasks/Omfapp/6 2354cBf-4ae 1-4423-9¢2d-004197f7cb30 Q#%| 0 0 &

fops (@ PrDataColection i @ PV

Pl Data Collection Manager -3

Components Routing ~ foglamplab OMF Details

Fiter Co... Y Data Sources Connectors i Relays @ Destinations @ Configuration Diagnostics

Data Sources - °| Status =
Connectors > B @ o @ WD || @ rtng conurson Ho Roters

= Not Registered
~ foglamplab foglarmp -—
@ Add Relay Distinvation No relays are connected to this connector. To select one

. o mord relays to 5ceive dats from this conneciar click
Relays Configine Fouting

@ WIN-4M7ODKBORH2

Destinations ~ Configure Routing

WIN- Pl
© WoDKEDRHD Server

Narme.

foglarmpiab

~| OMF App Type

Configuration Tasks for foglamplab [STSITIEEEO N <o Configuration || L0

Configure Routing Configure Data Desciption

v Select or Add a Relay. ' Set up Destination Data Settings (requires Relay and foglarmp iab test
Destination)

Access Token Expiration

Doss not expite

P B e

e B 5 @ 95 0RE @

_images/pip_1.jpg
Dashboard
Assets & Readings
South

North
Notifications
Control Dispatcher
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Python

Manage packages
View/install Python packages

_images/password_rotation.jpg
. Fledge @ foglamp-18/Fledge Demo Received: 117,981 Sent: 0 Uptime: 00:12:02 mark v

Dashboard
Assets & Readings General v Fledge Admin and User REST API &
South > Installation
North » Admin API Enable HTTP @
» Fledge Service HTTP Port 8081

Notifications

Schedules Certificate Name fledge
Certificate Store Authentication mandatory ¥
Backup & Restore Authentication any v
method
Logs
Auth Certificate ca
At Allow Ping @
Notifications Password Expiry 20 B
Packages Days
Auth Providers 1v |{
System
2 "providers": [
L 5 "username",
4 “ldap"
Support 5]
6 }

Settings

_images/pip_3.jpg
Developer / Python Packages | Install

Package Pack

Version

el

_images/pip_2.jpg
Developer | Python Packages

Pacakge
absl-py

aiocoap

aiohttp
aiohttp-cors
aiohttp-dynamic
aiosignal
alabaster

area

argh

asnicrypto
astor

astroid
async-timeout
asynctest
atomicwrites
attrs

Automat

azure-iot-device

Version
071
03
381
070
130
120

0712

0262
0.24.0
071
166
402
0130
140
2210
06.0

251

Add +

_images/opcua_11.jpg
o—0

Plugin & Service Name

Asset Name
OPCUA Server URL

OPCUA Object Subscriptions

Min Reporting Interval (m

Security Mode

Security Policy

User Authentication Policy
Username

Password

CA Certificate Authority
Server Public Certificate
Client Public Certificate
Client Private Key
Certificate Revocation List

Debug Trace File

Previous

Review Configuration

s2opeua

opctcpi/iocalhost:s3530/0PCUA/SimulationServer

v {
2+ “subscriptions”: [
; 201"
- i=1002"
5 1
¥
1000
None v

Done

_images/opcua_1.jpg
Plugin & Service Name

Asset Name
OPCUA Server URL

OPCUA Object Subscriptions

Subseribe By ID

Asset Name Source
Asset Path Delimiter

Min Reporting Interval

Previous

opeua

Review Configuration

opetcpi//marklocal:53530/OPCUA/SimulationServer

[CRF SV

Nodeld

100

"subscriptions

“ns=5;

[
=85/0:Simulation”

Next

Done

_images/opcua_3.jpg
Security policy Noe
Basic2se
User authentication policy Basicasesnass

_images/opcua_2.jpg
Security mode Noe
s
Security policy SignAndencrypt

User authentication policy [—

_images/opcua_server.jpg
@ Fledge OPCUA | + |
Running opc.tcp://foglamp-18.local:4840/fledge /server —- urn://fledge.dianomic.com
© search Attributes and References | + |
9 Objects (®
> & Boothl i
v 49 Control Auribute Value
» Noded
> @ server NodeClass Variable
> & modbust BrowseName 2:Enginespeed
»§ riddbiz DisplayName EngineSpeed
L@ o Description EngineSpeed
BTy > WriteMask 1
e~k > UserWriteMask 1
¥ Value 7
> StatsCode GOOD (0x00000000) ™
I ServerTimestamp 02/09/22 15:01:47.48336.
SourceTimestamp null
Serverpicoseconds)
SourcePicoseconds 0
Value 7
> DataType In32
ValueRank Scalar
ArrayDimensions nuil
AccessLevel CurrentRead
UserAccessLevel CurrentRead
MinimumSamplinginterval 1.0
Historizing false

_images/opcua_4.jpg
User authentication policy snonymass
Username

_images/password.jpg
Reset Password

_images/PI_token.jpg
%5, 1921682101 - Remote Desktop Connection

Yoy
/@ Proata Colecion wansger x _\
|/

< C | @ Secure | https:/win-4m7odkbOrh2:546 1/ tasks/Omfapp/ds 75868 3-bReb-db 3c-8d94-826b6 78be3zb Q%o 0

1 Agps (@ PLOsta Coletion M ©) PLViion

Pl Data Collection Manager -3

Components Routing v foglamplab OMF Details
FiterCo... Y| Filter Options | Data Sources Connectors i Relays @ Destinations @ Configuration Diagnastics
| TregEmRD .
Data Sources &
foglamplab
v fodlamplab ey @ WiN4M7OD... =¥ @ WIN-4M7OD, OMF App Type
Connectors B
foglamp
v foglamplab foglamp.
Description
Relays B

foglernp lab test

@ WIN-4M7ODKEORH2
Access Token Expiration
Destinations B

Does rot expire

WIN- Pl
© WoDKEDRHD Serer

Edit H

Producer Token/D
uid=ci5758683-bBeb-453c-8404-826067Bbe32b8crt=20
Relay Ingress URLI
hitps//sin-4mTodkb0rh?. 5460 ingress/messages

Expiration Date
12/31/9999, 01:00:00

Revoked
-| false

& EditRouting Configuration for foglamplab | Less

| B T H @ 5 OREOPAE N

[%) oy

_images/PI_token1.jpg
%5, 1921682101 - Remote Desktop Connection

Yoy
/@ Proata Colecion wansger x _\
|/

< C | @ Secure | https:/win-4m7odkbOrh2:546 1/ tasks/Omfapp/ds 75868 3-bReb-db 3c-8d94-826b6 78be3zb Q%o 0

1 Agps (@ PLOsta Coletion M ©) PLViion

Pl Data Collection Manager -3

Components Routing v foglamplab OMF Details
FiterCo... Y| Filter Options | Data Sources Connectors i Relays @ Destinations @ Configuration Diagnastics
| TregEmRD .
Data Sources &
foglamplab
v fodlamplab ey @ WiN4M7OD... =¥ @ WIN-4M7OD, OMF App Type
Connectors B
foglamp
v foglamplab foglamp.
Description
Relays B

foglernp lab test

@ WIN-4M7ODKEORH2
Access Token Expiration
Destinations B

Does rot expire

WIN- Pl
© WoDKEDRHD Serer

Edit H

Producer Token/D
uid=ci5758683-bBeb-453c-8404-826067Bbe32b8crt=20
Relay Ingress URLI
hitps//sin-4mTodkb0rh?. 5460 ingress/messages

Expiration Date
12/31/9999, 01:00:00

Revoked
-| false

& EditRouting Configuration for foglamplab | Less

| B T H @ 5 OREOPAE N

[%) oy

_images/PI_connectors1.jpg
%) 192.168.2.101 - Remote Desktop Connection

T,
/@ P1Data Collection Manager X \\
v/)

s X
ES =T

<« C | @ Secure | hitps://win-4m7odkbOrh2:546 1/ui/config

Relays

n Manager

@ Destinations @

Bops (@ PLData Colectionon. @ P1ison
Components Routing

Fiter Co.._ Y Data Sources Connectors |
[y — . Add an OMF Application
Connectors -

Relays o

/A WIN-4M7ODKBORH2
Destinations B

@ WIN-4M7ODKBORH2 P Server

Eistart,

A WINAM7OD.

@ Win-am70D.

LB >eJ S 0RE N

& Edit Routing Configuration

-

aQax/o 0

Overview

Use this application to set up, maintain, and manage
your PI Cannectar data flow

The Components list shows the data sources,
connectors, relays, and destinations set up in your data
flow

The Routing area shows how the Components are
connected to each other to get data from data sources to
destinations

This pane shows contextual information about the iterms

you select. To clear your selection and see this overview,
click in any open area

Less

Tasks

) Add a connector

Navigate to the connector app to initialize 2
connection. Click here to access the connection
string

/A WINAM7ODKBORK2: No Connectors
Route connectors to this relay.

o743

[% oy

_images/add_notification_service.jpg
Q

= & Fledge @ pi4/Fledge Received: 2,147,483,647 Sent:0 Uptime: 00:00:31 o
Dashboard

Assets & Readings Notification service is not added and enabled. add & enable now

South

North Notifications & Create Notification Instance + €&

N

No Record
Configuration

Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings
© 2019 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/add_user.jpg
Create User

_images/PersistActions.png
Developer

Import the data
Export the data

Delete the data

_images/PersistedPlugins.png
Configuration Advanced Configuration Security Configuration | Developer

OMF

1
" eantNataTunes

_images/alexa_1.jpg
Notification Instance

Access Code
Title

Enabled

Rule

Delivery Channel

Done

The level in tank 15 s below 10%

Previous

_images/admin_api.jpg
& Fledge

Dashboard

Assets & Readings
South

North
Notifications
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings

@ foglamp-18/Fledge Demo v

General

» Installation
> Admin API

» Fledge Service

Enable HTTP
HTTP Port
HTTPS Port
Certificate Name
Authentication

Authentication
method

Auth Certificate

Allow Ping

Passwor